Verilog练习:HDLBits笔记14

本文介绍了三种一维和二维细胞自动机:Rule90、Rule110以及康威的生命游戏。在Rule90和Rule110中,每个细胞的状态根据其邻居的状态按特定规则更新。康威的生命游戏中,细胞状态依赖于周围细胞的数量。这些自动机展示了复杂行为的简单规则生成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

四、Sequential Logic 

More Circuits

1、Rule 90

Problem Statement:

In this circuit, create a 512-cell system (q[511:0]), and advance by one time step each clock cycle. The load input indicates the state of the system should be loaded with data[511:0]. Assume the boundaries (q[-1] and q[512]) are both zero (off).

Rule 90 is a one-dimensional cellular automaton with interesting properties.

The rules are simple. There is a one-dimensional array of cells (on or off). At each time step, the next state of each cell is the XOR of the cell's two current neighbours. A more verbose way of expressing this rule is the following table, where a cell's next state is a function of itself and its two neighbours:

LeftCenterRightCenter's next state
1110
1101
1010
1001
0111
0100
0011
0000

(The name "Rule 90" comes from reading the "next state" column: 01011010 is decimal 90.)

module top_module(
    input clk,
    input load,
    input [511:0] data,
    output [511:0] q 
); 
    always@(posedge clk)begin
        if(load)
            q <= data;
        else
            q <= ((q << 1) ^ (q >>1));
    end

endmodule

 2、Rule 110

Problem Statement:

In this circuit, create a 512-cell system (q[511:0]), and advance by one time step each clock cycle. The load input indicates the state of the system should be loaded with data[511:0]. Assume the boundaries (q[-1] and q[512]) are both zero (off).

Rule 110 is a one-dimensional cellular automaton with interesting properties (such as being Turing-complete).

There is a one-dimensional array of cells (on or off). At each time step, the state of each cell changes. In Rule 110, the next state of each cell depends only on itself and its two neighbours, according to the following table:

LeftCenterRightCenter's next state
1110
1101
1011
1000
0111
0101
0011
0000

(The name "Rule 110" comes from reading the "next state" column: 01101110 is decimal 110.)

module top_module(
    input clk,
    input load,
    input [511:0] data,
    output [511:0] q
); 
    always@(posedge clk)begin
        if(load)
            q <= data;
        else 
            q <= (~(q>>1) & q) | (~q & q<<1) | (q>>1 & q & ~(q<<1));
    end

endmodule

 3、Conway's Game of life 16x16

Problem Statement:

Conway's Game of life is a two-dimensional cellular automaton.

The "game" is played on a two-dimensional grid of cells, where each cell is either 1 (alive) or 0 (dead). At each time step, each cell changes state depending on how many neighbours it has:

  • 0-1 neighbour: Cell becomes 0.
  • 2 neighbours: Cell state does not change.
  • 3 neighbours: Cell becomes 1.
  • 4+ neighbours: Cell becomes 0.

The game is formulated for an infinite grid. In this circuit, we will use a 16x16 grid. To make things more interesting, we will use a 16x16 toroid, where the sides wrap around to the other side of the grid. For example, the corner cell (0,0) has 8 neighbours: (15,1), (15,0), (15,15), (0,1), (0,15), (1,1), (1,0), and (1,15). The 16x16 grid is represented by a length 256 vector, where each row of 16 cells is represented by a sub-vector: q[15:0] is row 0, q[31:16] is row 1, etc. (This tool accepts SystemVerilog, so you may use 2D vectors if you wish.)

  • load: Loads data into q at the next clock edge, for loading initial state.
  • q: The 16x16 current state of the game, updated every clock cycle.

The game state should advance by one timestep every clock cycle.

module top_module(
    input clk,
    input load,
    input [255:0] data,
    output [255:0] q 
);
    reg[3:0]sum;
    
    integer i;
    
    always@(posedge clk)begin
        if(load)
            q[255:0] <= data[255:0];
        else 
            for(i=0; i<256; i=i+1)begin
                if(i == 0)
                    sum = q[255] + q[240] + q[241] + q[15] + q[1] + q[31] + q[16] + q[17];
                //左上角
                else if(i == 15)
                    sum = q[254] + q[255] + q[240] + q[14] + q[0] + q[30] + q[31] + q[16];
                //右上角
                else if(i == 240)
                    sum = q[239] + q[224] + q[225] + q[255] + q[241] + q[15] + q[0] + q[1];
                //左下角
                else if(i == 255)
                    sum = q[238] + q[239] + q[224] + q[254] + q[240] + q[15] + q[0] + q[14];
                //右下角
                else if(i>0 && i<15)
                    sum = q[239+i] + q[240+i] + q[241+i] + q[i-1] + q[i+1] + q[i+15] + q[i+16] + q[i+17];
                //上边界
                else if(i>240 && i<255)
                    sum = q[i-17] + q[i-16] + q[i-15] + q[i-1] + q[i+1] + q[i-239] + q[i-240] + q[i-241];
                //下边界
                else if(i%16 == 0)
                    sum = q[i-1] + q[i-16] + q[i-15] + q[i+15] + q[i+1] + q[i+31] + q[i+16] + q[i+17];
                //左边界
                else if(i%16 == 15)
                    sum = q[i-17] + q[i-16] + q[i-31] + q[i-1] + q[i-15] + q[i+15] + q[i+16] + q[i+1];
                //右边界
                else 
                    sum = q[i-17] + q[i-16] + q[i-15] + q[i-1] + q[i+1] + q[i+15] + q[i+16] + q[i+17];    
                case(sum)
                    4'd2 : q[i] <= q[i];
                    4'd3 : q[i] <= 1'b1;
                    default : q[i] <= 1'b0;
                endcase
            end
    end
    
endmodule

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值