03 表情分类模型

总目录:人脸检测与表情分类
https://blog.youkuaiyun.com/whiffeyf/category_12793480.html


b站视频: https://www.bilibili.com/video/BV1u4W4eCERn/

这篇博客主要是讲的是,如何使用表情分类模型进行表情分类

前提

注意,输入的图片是裁剪好的人脸图,如:
在这里插入图片描述
检测人脸与检测参考:YOLOv7-face人脸检测

模型下载

https://download.youkuaiyun.com/download/WhiffeYF/89654401
解压后使用 emotion.pth

表情分类

emotion.py

执行:

python emotion.py --weights emotion.pth --source crops/face/
'''
python emotion.py --weights emotion.pth --source crops/face/
'''
import os
import torch
from torchvision import transforms
from PIL import Image
import torch.nn as nn
import torchvision.models as models
import argparse

class EmotionClassifier:
    def __init__(self, model_path, device='cpu'):
        self.device = device
        self.class_names = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
        self.model = self.load_model(model_path)
        self.transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ])

    def load_model(self, model_path):
        model = models.mobilenet_v2(pretrained=False)
        model.classifier[1] = nn.Linear(model.last_channel, len(self.class_names))
        model.load_state_dict(torch.load(model_path, map_location=self.device))
        model.eval()
        model.to(self.device)
        return model

    def predict(self, image_path):
        image = Image.open(image_path).convert('RGB')
        image = self.transform(image).unsqueeze(0).to(self.device)
        with torch.no_grad():
            outputs = self.model(image)
            _, predicted = torch.max(outputs, 1)
        predicted_class = self.class_names[predicted.item()]
        return predicted_class

    def predict_folder(self, folder_path):
        results = {}
        for filename in os.listdir(folder_path):
            if filename.endswith(('.png', '.jpg', '.jpeg')):
                file_path = os.path.join(folder_path, filename)
                prediction = self.predict(file_path)
                results[filename] = prediction
        return results

    def classify(self, input_path):
        if os.path.isdir(input_path):
            return self.predict_folder(input_path)
        elif os.path.isfile(input_path):
            return {os.path.basename(input_path): self.predict(input_path)}
        else:
            raise ValueError(f"Invalid path: {input_path}")

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='emotion.pth')
    parser.add_argument('--source', type=str, default='crops/face/')
    opt = parser.parse_args()
    
    weights = opt.weights
    source = opt.source # 可以是单张图片路径或图片文件夹路径
    '''
    model_path = 'emotion.pth'
    input_path = 'crops/face/'  
    '''
    classifier = EmotionClassifier(weights)
    predictions = classifier.classify(source)
    for filename, emotion in predictions.items():
        print(f'{filename}: {emotion}')


结果

在这里插入图片描述

表情分类改进

emotion.py

输出情绪分类的分布情况

'''
python emotion.py --weights emotion2.pth --source YS-emotion/happy
python emotion.py --weights emotion2.pth --source YS-emotion/neutral

python emotion.py --weights emotion.pth --source YS-emotion/happy
python emotion.py --weights emotion.pth --source YS-emotion/neutral
'''
import os
import torch
from torchvision import transforms
from PIL import Image
import torch.nn as nn
import torchvision.models as models
import argparse

class EmotionClassifier:
    def __init__(self, model_path, device='cpu'):
        self.device = device
        self.class_names = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
        self.model = self.load_model(model_path)
        self.transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ])

    def load_model(self, model_path):
        model = models.mobilenet_v2(pretrained=False)
        model.classifier[1] = nn.Linear(model.last_channel, len(self.class_names))
        model.load_state_dict(torch.load(model_path, map_location=self.device))
        model.eval()
        model.to(self.device)
        return model

    def predict(self, image_path):
        image = Image.open(image_path).convert('RGB')
        image = self.transform(image).unsqueeze(0).to(self.device)
        with torch.no_grad():
            outputs = self.model(image)
            _, predicted = torch.max(outputs, 1)
        predicted_class = self.class_names[predicted.item()]
        return predicted_class

    def predict_folder(self, folder_path):
        results = {}
        for filename in os.listdir(folder_path):
            if filename.endswith(('.png', '.jpg', '.jpeg')):
                file_path = os.path.join(folder_path, filename)
                prediction = self.predict(file_path)
                results[filename] = prediction
        return results

    def classify(self, input_path):
        if os.path.isdir(input_path):
            results = self.predict_folder(input_path)
            self.count_emotions(results)
            return results
        elif os.path.isfile(input_path):
            result = {os.path.basename(input_path): self.predict(input_path)}
            self.count_emotions(result)
            return result
        else:
            raise ValueError(f"Invalid path: {input_path}")

    def count_emotions(self, predictions):
        total = len(predictions)
        emotion_count = {emotion: 0 for emotion in self.class_names}
        
        for emotion in predictions.values():
            if emotion in emotion_count:
                emotion_count[emotion] += 1

        print("\nEmotion Distribution:")
        for emotion, count in emotion_count.items():
            percentage = (count / total) * 100 if total > 0 else 0
            print(f"{emotion}: {count} ({percentage:.2f}%)")

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='emotion.pth')
    parser.add_argument('--source', type=str, default='crops/face/')
    opt = parser.parse_args()
    
    weights = opt.weights
    source = opt.source  # 可以是单张图片路径或图片文件夹路径

    classifier = EmotionClassifier(weights)
    predictions = classifier.classify(source)
    '''
    for filename, emotion in predictions.items():
        print(f'{filename}: {emotion}')
    '''

结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值