论文阅读:Examining the robustness of LLM evaluation to the distributional assumptions of benchmarks

https://arxiv.org/pdf/2404.16966v2
这篇论文主要探讨了大型语言模型(LLMs)在基准测试中的评估问题,特别是关注了基准测试中提示的分布假设对模型评估的影响。

背景与动机:
大型语言模型(LLMs)在自然语言处理领域取得了显著进展,但它们的评估方法存在挑战。传统的评估方法通常假设基准测试中的提示是独立同分布(i.i.d.)的样本,这种假设可能不准确,因为实际应用中提示的分布可能因用例而异。因此,研究者们提出了研究LLMs评估的鲁棒性,特别是针对基准测试中提示的分布假设。

研究问题:
论文主要研究了以下问题:基准测试中的提示权重是否对模型的评估结果有显著影响;模型在不同提示上的表现是否相关;以及这种相关性是否由提示的语义相似性所驱动。

实验设置与方法:

  • 基准测试选择:研究者选择了ANLI、HellaSwag、CommonsenseQA和CNN/Daily Mail四个不同的基准测试,覆盖了自然语言推理、常识推理和文本摘要等任务。
  • 评估指标:对于二元结果的基准测试(如ANLI),使用平均准确率;对于连续结果的CNN/Daily Mail,使用ROUGE得分和余弦相似度。
  • 模型选择:包括来自不同开发者的多种LLMs,如GPT、Llama和其他流行的模型。
  • <
Understanding performance behavior related to property access in a technical context involves examining how programming languages and their runtime environments handle property retrieval, especially during the first access. In many programming languages, property access may involve dynamic resolution, which can introduce overhead compared to direct variable access. This overhead can be attributed to several factors, such as the need to resolve the property dynamically, perform access control checks, or even execute getter functions if defined. One aspect to consider is the impact of just-in-time (JIT) compilation and optimization techniques used by modern virtual machines, such as those found in JavaScript engines or the Java Virtual Machine (JVM). These systems can optimize property access after the initial usage, reducing the overhead in subsequent accesses. For example, if a property is accessed repeatedly in a tight loop, the JIT compiler may inline the access or optimize the call site based on the observed types during previous executions [^1]. Another consideration is the use of caching mechanisms within frameworks and libraries. In some cases, frameworks may cache the results of property accesses to improve performance on subsequent calls. This is particularly relevant in high-level frameworks where abstractions may introduce additional layers of indirection that could affect performance on the first access [^4]. Understanding these behaviors is crucial for performance optimization, especially in applications where responsiveness and efficiency are critical. Developers should profile their applications to identify bottlenecks related to property access and consider the implications of their design choices on performance [^2]. ```python # Example of a class with property access in Python class Example: def __init__(self): self._value = None @property def value(self): # Simulate some processing during first access if self._value is None: self._value = "Computed" return self._value # Create an instance and access the property example = Example() print(example.value) # This will compute the value print(example.value) # This will retrieve the cached value ``` In this example, the `value` property is computed only on the first access, and subsequent accesses return the cached value. This pattern can be useful for optimizing performance when the computation is expensive and the value does not change often.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值