A Survey on Evaluation of Large Language Models
只取了鲁棒性相关的内容
LLMs:《A Survey on Evaluation of Large Language Models大型语言模型评估综述》理解智能本质(具备推理能力)、AI评估的重要性(识别当前算法的局限性+设
对抗鲁棒性是衡量大型语言模型(LLMs)在面对故意设计的、旨在误导或破坏模型性能的输入时的稳定性和安全性的关键指标。
-
对抗鲁棒性的定义与重要性:对抗鲁棒性关注的是LLMs在遭遇敌意提示或恶意输入时能否维持其性能和安全性。
-
对抗性文本攻击的评估:研究者们通过创建统一的基准测试,如PromptBench,对LLMs在不同层次上的对抗性文本攻击进行了评估,发现这些模型在面对精心设计的对抗性输入时存在脆弱性。
-
视觉-语言模型的鲁棒性