最长上升子序列转移方程:d[i] = max(d[i], d[j]+1) (1<j <= i-1)。
一开始直接用O(n^2)的算法超时了,后来百度发现有一种O(nlogn)的贪心算法,而且可以输出方案,至于最长下降序列的话也可以有O(nlogn)的贪心实现,目前我先把输出方案弄清楚再去搞最长下降序列的O(nlogn)算法。
具体的方法请见:http://www.matrix67.com/blog/archives/112,http://www.cnblogs.com/celia01/archive/2012/07/27/2611043.html
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
using namespace std;
const int MAXN = 101000;
const int INF = 0x3f3f3f3f;
int A[MAXN];
int S[MAXN], d[MAXN];
int n;
void init()
{
for(int i = 1; i <= n; i++) S[i] = INF;
S[0] = -INF;
d[0] = 0;
}
int BSearch(int x, int y, int q)
{
while(x <= y)
{
int mid = x+(y-x)/2;
if(S[mid] >= q) y = mid-1;
else x = mid+1;
}
return x;
}
void dp()
{
init();
int ans = 0;
for(int i = 1; i <= n; i++)
{
int x = 0, y = i;
int pos = BSearch(x, y, A[i]);
d[i] = pos;
S[d[i]] = min(S[d[i]], A[i]);
ans = max(ans, d[i]);
}
printf("%d\n", ans);
}
void read_case()
{
for(int i = 1; i <= n; i++) scanf("%d", &A[i]);
}
void solve()
{
read_case();
dp();
}
int main()
{
while(~scanf("%d", &n))
{
solve();
}
return 0;
}