范数
在介绍主题之前,先来谈一个非常重要的数学思维方法:几何方法。在大学之前,我们学习过一次函数、二次函数、三角函数、指数函数、对数函数等,方程则是求函数的零点;到了大学,我们学微积分、复变函数、实变函数、泛函等。我们一直都在学习和研究各种函数及其性质,函数是数学一条重要线索,另一条重要线索——几何,在函数的研究中发挥着不可替代的作用,几何是函数形象表达,函数是几何抽象描述,几何研究“形”,函数研究“数”,它们交织在一起推动数学向更深更抽象的方向发展。
函数图象联系了函数和几何,表达两个数之间的变化关系,映射推广了函数的概念,使得自变量不再仅仅局限于一个数,也不再局限于一维,任何事物都可以拿来作映射,维数可以是任意维,传统的函数图象已无法直观地表达高维对象之间的映射关系,这就要求我们在观念中,把三维的几何空间推广到抽象的n维空间。
由于映射的对象可以是任何事物,为了便于研究映射的性质以及数学表达,我们首先需要对映射的对象进行“量化”,取定一组“基”,确定事物在这组基下的坐标,事物同构于我们所熟悉的抽象几何空间中的点,事物的映射可以理解为从一个空间中的点到另一个空间的点的映射,而映射本身也是事物,自然也可以抽象为映射空间中的一个点,这就是泛函中需要研究的对象——函数。
从一个线性空间到另一个线性空间的线性映射,可以用一个矩阵来表达,矩阵被看线性作映射,线性映射的性质可以通过研究矩阵的性质来获得,比如矩阵的秩反映了线性映射值域空间的维数,可逆矩阵反映了线性映射的可逆,而矩阵的范数又反映了线性映射的哪