[Contest]CodeChef October Challenge 2017

本文分享了一次CC竞赛的经历,详细记录了解决从PERFCONT到XORTREEH共10道题目的过程,并提供了每道题目的代码实现,涵盖了算法技巧如贪心策略、动态规划等。

Presentation

第一次打CC
上一次作死最后几个小时报了名打了三题
裸题比较的多吧。。前面的几题都有一些小细节要注意。
还是大佬厉害啊。最开始直接达到了 rank1
最后Challenge不想做了啊 (其实就是做不来)
只有 rank19 啦。。
不过最后两道题还是学到了一些东西的。

Solution

1.PERFCONT

#include <bits/stdc++.h>
using namespace std;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
template<typename T>
inline void read(T &x) {
    static char c; x = 0; int sgn = 0;
    for (c = get(); c < '0' || c > '9'; c = get()) if (c == '-') sgn = 1;
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
    if (sgn) x = -x;
}

int test, n, p, x;
int e, h;

int main(void) {
    read(test);
    while (test--) {
        e = h = 0;
        read(n); read(p);
        for (int i = 1; i <= n; i++) {
            read(x);
            if (x >= p / 2) ++e;
            if (x <= p / 10) ++h;
        }
        if (e == 1 && h == 2) puts("yes");
        else puts("no");
    }
    return 0;
} 

2.MEX

#include <bits/stdc++.h>
using namespace std;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
template<typename T>
inline void read(T &x) {
    static char c; x = 0; int sgn = 0;
    for (c = get(); c < '0' || c > '9'; c = get()) if (c == '-') sgn = 1;
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
    if (sgn) x = -x;
}

int test, n, p, x;
int e, h;

int main(void) {
    read(test);
    while (test--) {
        e = h = 0;
        read(n); read(p);
        for (int i = 1; i <= n; i++) {
            read(x);
            if (x >= p / 2) ++e;
            if (x <= p / 10) ++h;
        }
        if (e == 1 && h == 2) puts("yes");
        else puts("no");
    }
    return 0;
} 

3.CHEFCOUN
xjb构造就好了。。

using namespace std;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
template<typename T>
inline void read(T &x) {
    static char c; x = 0; int sgn = 0;
    for (c = get(); c < '0' || c > '9'; c = get()) if (c == '-') sgn = 1;
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
    if (sgn) x = -x;
}

const int N = 202020;
typedef unsigned ui;

int n, test;
ui a[N], mx, sum, S;
ui pre[N];

int main(void) {
    read(test);
    mx = (1ll << 32) - 1;
    while (test--) {
        read(n); sum = S = 0;
        S = mx;
        int i;
        for (i = 1; i <= n; i++) {
            if (S < 100001 + (n - i)) break;
            a[i] = 100000; S -= 100000;
        }
        a[i] = 2;
        for (++i; i <= n; i++) a[i] = 1;
        for (i = 1; i <= n; i++) printf("%d\n", a[i]);
        putchar('\n');
    }
    return 0;
} 

4.CHEFCOUN
贪心题。考虑把 a 插到b或者 b 插到a里面,只要合法就一直插。。
题意最开始好像有问题。。搞了很久的样子。

#include <bits/stdc++.h>
using namespace std;

const int N = 201010;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
inline void read(int &x) {
    static char c; x = 0;
    for (c = get(); c < '0' || c > '9'; c = get());
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
}
int test, n, a, b, x, y;
char ch[N];
struct cpp {
    int len, Ans;
    char ans[N];
    inline char &operator [](int x) {
        return ans[x];
    }

    inline bool operator <(const cpp &a) {
        return Ans < a.Ans;
    }
};
cpp Ans, tmp;

inline void Solve(int a, int b, char A, char B, int x, int y) {
    int i, c, ls, d = a / x, e = a % x; tmp.len = 0; tmp.Ans = 0;
    if (b < d) {
        for (c = 0; c < b; ++c) {
            for (int j = 0; j < x; j++) tmp[tmp.len++] = A;
            tmp[tmp.len++] = B;
        }
        ls = 0;
        for (i = b * (x + 1); i < n; i++) {
            if (ls == x) {
                tmp[tmp.len++] = '*';
                tmp.Ans++; ls = 0;
            }
            tmp[tmp.len++] = A; ++ls;
        }
        if (tmp.Ans < Ans.Ans) Ans = tmp;
    } else {
        b -= d;
        for (c = 0; c < d; ++c) {
            for (int j = 0; j < x; j++) {
                for (i = 0; i < y - (j == 0 && c != 0) && b; i++) --b, tmp[tmp.len++] = B;
                tmp[tmp.len++] = A;
            }
            tmp[tmp.len++] = B;
        }
        for (c = 0; c < e; ++c) {
            for (i = 0; i < y - (c == 0) && b; i++) --b, tmp[tmp.len++] = B;
            tmp[tmp.len++] = A;
        }
        ls = 0;
        for (int i = tmp.len - 1; i; i--)
            if (tmp[i] == B) ++ls;
            else break;
        for (int i = 0; i < b; i++) {
            if (ls == y) {
                tmp[tmp.len++] = '*';
                tmp.Ans++; ls = 0;
            }
            tmp[tmp.len++] = B; ++ls;
        }
        if (tmp.Ans < Ans.Ans) Ans = tmp;
    }
}

int main(void) {
    scanf("%d\n", &test);
    while (test--) {
        a = b = 0; scanf("%s", ch);
        n = strlen(ch);
        for (int i = 0; i < n; i++)
            if (ch[i] == 'a') ++a;
            else ++b;
        scanf("%d %d\n", &x, &y);
        Ans.Ans = N;
        Solve(a, b, 'a', 'b', x, y);
        Solve(b, a, 'b', 'a', y, x);
        int lsa = 0, lsb = 0;
        for (int i = 0; i < Ans.len; i++)
            putchar(Ans[i]);
        putchar('\n');
    }
    return 0;
} 

5.CHEFCOUN
因为总共只有两条最短路径,xjb判一判就好了。

#include <bits/stdc++.h>
using namespace std;

const int N = 301010;
typedef long long ll;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
template<typename T>
inline void read(T &x) {
    static char c; x = 0;
    for (c = get(); c < '0' || c > '9'; c = get());
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
}

template<typename T>
inline T Min(T a, T b) {
    return a < b ? a : b;
}

struct Cycle {
    vector<ll> val;
    int sz;
    ll sum;
    inline void Init(void) {
        val.clear(); read(sz);
        val.resize(sz + 3); sum = 0;
        val[0] = 0;
        for (int i = 1; i <= sz; i++) {
            read(val[i]); sum += val[i];
        }
        for (int i = 1; i <= sz; i++)
            val[i] += val[i - 1];
    }
    inline void Print(void) {
        for (int i = 1; i <= sz; i++) printf("%d ", val[i]);
        putchar('\n');
    }
    inline ll Dist(int x, int y) {
        if (x > y) swap(x, y);
        return Min(val[y - 1] - val[x - 1], sum - val[y - 1] + val[x - 1]);
    }
};
Cycle a[N];
int test, n, m, q, x, y, z, v1, c1, v2, c2;
int in[N], out[N];
ll val[N], dis[N];
ll sum, res, ans, S;
int p;

int main(void) {
    read(test);
    while (test--) {
        read(n); read(q); S = sum = 0; val[0] = 0;
        for (int i = 1; i <= n; i++) a[i].Init();
        for (int i = 1; i <= n; i++) {
            read(out[i]); read(in[i % n + 1]);
            read(z); val[i] = z; sum += z;
        }
        for (int i = 1; i <= n; i++) dis[i] = a[i].Dist(in[i], out[i]);
        for (int i = 1; i <= n; i++) {
            val[i] += val[i - 1];
            S += dis[i];
            dis[i] += dis[i - 1];
        }
        while (q--) {
            read(v1); read(c1); read(v2); read(c2);
            if (c1 > c2) {
                swap(c1, c2); swap(v1, v2);
            }
            p = a[c1].Dist(v1, out[c1]);
            p = a[c2].Dist(in[c2], v2);
            res = a[c1].Dist(v1, out[c1]) + val[c2 - 1] - val[c1 - 1] + a[c2].Dist(in[c2], v2) + dis[c2 - 1] - dis[c1];
            ans = res;
            res = a[c1].Dist(v1, in[c1]) + sum - val[c2 - 1] + val[c1 - 1] + a[c2].Dist(out[c2], v2) + S - dis[c2] + dis[c1 - 1];
            ans = Min(res, ans);
            printf("%lld\n", ans);
        }
    }
    return 0;
} 

6.MARRAYS
直接DP,对一个元素维护一个前缀和后缀,这样就没有绝对值的影响。就可以 O(1) 转移了。

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

typedef long long ll;

const int N = 1010101;
const long long INF = 1ll << 50;
typedef long long ll;
typedef pair<int, ll> P;

int n;
vector<int> a[N];
vector<ll> pre[N],suf[N];
vector<P> dp[N];

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
inline void read(int &x) {
    static char c; x = 0;
    for (c = get(); c < '0' || c > '9'; c = get());
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
}

inline void ReStore(int x,int y) {
    a[x].resize(y); pre[x].resize(y); suf[x].resize(y); dp[x].resize(y);
} 
inline bool cmp(P a,int b) {
    return a.first < b;
}

int main() {
    int t; read(t);
    while (t--)  {
        read(n);
        for (int i = 1; i <= n; i++) {
            int m, x; read(m); ReStore(i, m); 
            for (int j = 0; j<m; j++)  {
                read(a[i][j]);
                dp[i][j] = P(a[i][j], 0);
            }
        }
        for (int i = 2; i <= n; i++) {
            sort(dp[i - 1].begin(), dp[i - 1].end()); 
            int m = a[i - 1].size(); 
            pre[i - 1][0] = dp[i - 1][0].second - (ll)dp[i - 1][0].first * (i - 1); 
            suf[i - 1][m - 1] = dp[i - 1][m - 1].second + (ll)dp[i - 1][m - 1].first * (i - 1); 
            for (int j = 1; j < m; j++)
                pre[i - 1][j] = max(pre[i - 1][j - 1], dp[i - 1][j].second - (ll)dp[i - 1][j].first * (i - 1)); 
            for (int j = m - 2; ~j; j--)
                suf[i - 1][j] = max(suf[i - 1][j + 1], dp[i - 1][j].second + (ll)dp[i - 1][j].first * (i - 1)); 
            m = a[i].size(); int mm = a[i - 1].size(); 
            for (int j = 0; j < m; j++) {
                int nxt = (j + m - 1) % m, p = lower_bound(dp[i - 1].begin(), dp[i - 1].end(), a[i][j], cmp) - dp[i - 1].begin(); 
                if (a[i][j] <= dp[i - 1][0].first)
                    dp[i][nxt].second = suf[i - 1][0] - (ll)a[i][j] * (i - 1); 
                else if (a[i][j] >= dp[i - 1][mm - 1].first)
                    dp[i][nxt].second = pre[i - 1][mm - 1] + (ll)a[i][j] * (i - 1); 
                else
                    dp[i][nxt].second = max(pre[i - 1][p] + (ll)a[i][j] * (i - 1), suf[i - 1][p] - (ll)a[i][j] * (i - 1)); 
            }
        }
        ll ans = 0; 
        for (int i = 0; i < a[n].size(); i++)
            ans = max(ans, dp[n][i].second); 
        cout << ans << endl; 
        for (int i = 1; i <= n; i++) {
            a[i].clear(); pre[i].clear();
            suf[i].clear(); dp[i].clear();
        }
    }
    return 0; 
} 

7.POINTCN
Challenge 是真的做不来
8.SHTARR
又想起了CC的COT5

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
using namespace std;

const int N = 1010101;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
template<typename T>
inline void read(T &x) {
    static char c; x = 0;
    for (c = get(); c < '0' || c > '9'; c = get());
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
}
inline void reado(char &opt) {
    for (opt = get(); opt != '?' && opt != '+'; opt = get());
}

int mx[N << 2];
int ans[N << 2];
int l[N << 2], r[N << 2];
int a[N];
int n, q, x, y, z, test, L, R, res, Ans, MX, tmp, pos, t, p;
char opt;

template<typename T>
inline T Max(T a, T b) {
    return a > b ? a : b;
}
inline int Calc(int o, double v) {
    if (l[o] == r[o]) return mx[o] > v;
    if (v > mx[o << 1]) return Calc(o << 1 | 1, v);
    return Calc(o << 1, v) + ans[o] - ans[o << 1];
}
void Build(int o, int _l, int _r) {
    l[o] = _l; r[o] = _r;
    ans[o] = (a[_l] > 0); mx[o] = a[_l];
    if (_l == _r) return;
    int mid = (_l + _r) >> 1;
    Build(o << 1, _l, mid);
    Build(o << 1 | 1, mid + 1, _r);
    mx[o] = Max(mx[o << 1], mx[o << 1 | 1]);
    ans[o] = ans[o << 1] + Calc(o << 1 | 1, mx[o << 1]);
}
void Modify(int o, int pos, int x) {
    if (l[o] == r[o]) {
        mx[o] = x; ans[o] = 1;
        return;
    }
    int mid = (l[o] + r[o]) >> 1;
    if (pos <= mid) Modify(o << 1, pos, x);
    else Modify(o << 1 | 1, pos, x);
    mx[o] = Max(mx[o << 1], mx[o << 1 | 1]);
    ans[o] = ans[o << 1] + Calc(o << 1 | 1, mx[o << 1]);
}
inline void QAns(int o, int L, int R) {
    if (l[o] >= L && r[o] <= R) {
        tmp += Calc(o, MX);
        MX = Max(MX, mx[o]);
        return;
    }
    int mid = (l[o] + r[o]) >> 1;
    if (R <= mid) return QAns(o << 1, L, R);
    if (L > mid) return QAns(o << 1 | 1, L, R);
    QAns(o << 1, L, R); QAns(o << 1 | 1, L, R);
}
inline int QAns(int x) {
    tmp = 0; MX = -1; QAns(1, x, n + 1);
    return tmp;
}

int main(void) {
    read(test);
    while (test--) {
        read(n); read(q);
        for (int i = 1; i <= n; i++) read(a[i + 1]);
        Build(1, 1, n + 1);
        for (int i = 1; i <= q; i++) {
            reado(opt);
            if (opt == '+') {
                read(x); read(y);
                Modify(1, x + 1, a[x + 1] += y);
            } else {
                read(x); read(L); read(R);
                Modify(1, x, L - 1); res = QAns(x) - 1;
                Modify(1, x, R); t = QAns(x) - 1;
                Modify(1, x, R - 1); p = QAns(x) - 1;
                printf("%d\n", res - t + (p == t && p));
                Modify(1, x, a[x]);
            }
        }
    }
    return 0;
} 

9.LKYEDGE
枚举左端点 l 然后考虑建一颗以边存在时间为权值的最小生成树,那么会是lucky edge的边就是非树边,以及被他覆盖的边,直接暴力爬树就好了。
每次修改要缩点,因为后统计的一定会包含之前统计的里面。

#include <bits/stdc++.h>
using namespace std;

const int N = 10101;
const int M = 5050;
typedef pair<int, int> P;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
inline void read(int &x) {
    static char c; x = 0;
    for (c = get(); c <'0' || c > '9'; c = get());
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
}

struct edge {
    int to, next, id;
    edge (int t = 0, int n = 0, int i = 0):to(t), next(n), id(i) {}
};
edge G[M << 1];
int fa[N], rk[N], fat[N];
int n, m, p1, p2, x, y, z, Gcnt, test, clc, ccl, lca, Wcnt, r;
int head[N], vis[N], vst[N], pre[N];
int ans[N], id[N], dep[N], rak[N], num[N];
P E[M], E1[M];

inline int Head(int x) {
    if (vis[x] == clc) return head[x];
    vis[x] = clc; return head[x] = 0;
}
inline void AddEdge(int from, int to, int id = 0) {
    G[++Gcnt] = edge(to, Head(from), id); head[from] = Gcnt;
    G[++Gcnt] = edge(from, Head(to), id); head[to] = Gcnt;
}
inline int Fa(int x) {
    return fa[x] == x ? x : fa[x] = Fa(fa[x]);
}
inline int Merge(int x, int y) {
    static int f1, f2;
    f1 = Fa(x); f2 = Fa(y);
    if (f1 == f2) return false;
    if (rk[f1] < rk[f2]) swap(f1, f2);
    if (rk[f1] == rk[f2]) rk[f1]++;
    fa[f2] = f1; return true;
}
inline void dfs(int u, int f) {
    dep[u] = dep[f] + 1; vst[u] = ccl; fat[u] = f;
    for (int i = Head(u); i; i = G[i].next) {
        if (G[i].to != fat[u]) dfs(G[i].to, u);
        pre[G[i].to] = G[i].id;
    }
}
inline int LCA(int x, int y) {
    while (x != y) {
        if (dep[x] < dep[y]) swap(x, y);
        if (x != fa[x]) x = fa[x];
        else x = fat[x];
    }
    return x;
}

int main(void) {
    read(test);
    while (test--) {
        read(m); n = 0;
        for (int i = 0; i < m; i++) {
            read(x); read(y);
            E[i] = P(x, y); ans[i] = 0;
            id[n++] = x; id[n++] = y;
            dep[x] = dep[y] = 0;
        }
        sort(id, id + n);
        n = unique(id, id + n) - id;
        for (int i = 0; i < n; i++) rak[id[i]] = i + 1;
        for (int i = 0; i < m; i++) E[i] = P(rak[E[i].first], rak[E[i].second]);
        for (int l = 0; l < m; l++) {
            p1 = Gcnt = 0; ++clc;
            for (int i = 1; i <= n; i++) fa[i] = i;
            for (int i = l; i < m; i++) {
                if (Merge(E[i].first, E[i].second))
                    AddEdge(E[i].first, E[i].second, i);
                else {
                    num[p1] = i; E1[p1++] = E[i];
                }
            }
            ++ccl;
            for (int i = 1; i <= n; i++) {
                fa[i] = i;
            }
            for (int i = 0; i < p1; i++) {
                x = E1[i].first; y = E1[i].second;
                z = m - num[i]; ans[num[i]] += z;
                x = Fa(x); y = Fa(y); 
                if (vst[x] != ccl) dfs(x, 0);
                lca = LCA(x, y);
                if (y == lca || x == lca) {
                    if (x == lca) swap(x, y);
                    for (; dep[Fa(x)] > dep[lca]; x = r) {
                        if (Fa(x) == x) {
                            ans[pre[x]] += z; r = fat[x];
                        } else r = Fa(x);
                        fa[x] = fa[lca];
                    }
                } else {
                    for (; dep[Fa(x)] > dep[lca]; x = r) {
                        if (Fa(x) == x) {
                            ans[pre[x]] += z; r = fat[x];
                        } else r = Fa(x);
                        fa[x] = fa[lca];
                    }
                    x = y;
                    for (; dep[Fa(x)] > dep[lca]; x = r) {
                        if (Fa(x) == x) {
                            ans[pre[x]] += z; r = fat[x];
                        } else r = Fa(x);
                        fa[x] = fa[lca];
                    }
                }
            }
        }
        for (int i = 0; i < m; i++)
            printf("%d ", ans[i]);
        putchar('\n');
    }
    return 0;
} 

10.XORTREEH

标题基于Python的汽车之家网站舆情分析系统研究AI更换标题第1章引言阐述汽车之家网站舆情分析的研究背景、意义、国内外研究现状、论文方法及创新点。1.1研究背景与意义说明汽车之家网站舆情分析对汽车行业及消费者的重要性。1.2国内外研究现状概述国内外在汽车舆情分析领域的研究进展与成果。1.3论文方法及创新点介绍本文采用的研究方法及相较于前人的创新之处。第2章相关理论总结和评述舆情分析、Python编程及网络爬虫相关理论。2.1舆情分析理论阐述舆情分析的基本概念、流程及关键技术。2.2Python编程基础介绍Python语言特点及其在数据分析中的应用。2.3网络爬虫技术说明网络爬虫的原理及在舆情数据收集中的应用。第3章系统设计详细描述基于Python的汽车之家网站舆情分析系统的设计方案。3.1系统架构设计给出系统的整体架构,包括数据收集、处理、分析及展示模块。3.2数据收集模块设计介绍如何利用网络爬虫技术收集汽车之家网站的舆情数据。3.3数据处理与分析模块设计阐述数据处理流程及舆情分析算法的选择与实现。第4章系统实现与测试介绍系统的实现过程及测试方法,确保系统稳定可靠。4.1系统实现环境列出系统实现所需的软件、硬件环境及开发工具。4.2系统实现过程详细描述系统各模块的实现步骤及代码实现细节。4.3系统测试方法介绍系统测试的方法、测试用例及测试结果分析。第5章研究结果与分析呈现系统运行结果,分析舆情数据,提出见解。5.1舆情数据可视化展示通过图表等形式展示舆情数据的分布、趋势等特征。5.2舆情分析结果解读对舆情分析结果进行解读,提出对汽车行业的见解。5.3对比方法分析将本系统与其他舆情分析系统进行对比,分析优劣。第6章结论与展望总结研究成果,提出未来研究方向。6.1研究结论概括本文的主要研究成果及对汽车之家网站舆情分析的贡献。6.2展望指出系统存在的不足及未来改进方向,展望舆情
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值