[Contest]CodeChef October Challenge 2017

本文分享了一次CC竞赛的经历,详细记录了解决从PERFCONT到XORTREEH共10道题目的过程,并提供了每道题目的代码实现,涵盖了算法技巧如贪心策略、动态规划等。

Presentation

第一次打CC
上一次作死最后几个小时报了名打了三题
裸题比较的多吧。。前面的几题都有一些小细节要注意。
还是大佬厉害啊。最开始直接达到了 rank1
最后Challenge不想做了啊 (其实就是做不来)
只有 rank19 啦。。
不过最后两道题还是学到了一些东西的。

Solution

1.PERFCONT

#include <bits/stdc++.h>
using namespace std;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
template<typename T>
inline void read(T &x) {
    static char c; x = 0; int sgn = 0;
    for (c = get(); c < '0' || c > '9'; c = get()) if (c == '-') sgn = 1;
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
    if (sgn) x = -x;
}

int test, n, p, x;
int e, h;

int main(void) {
    read(test);
    while (test--) {
        e = h = 0;
        read(n); read(p);
        for (int i = 1; i <= n; i++) {
            read(x);
            if (x >= p / 2) ++e;
            if (x <= p / 10) ++h;
        }
        if (e == 1 && h == 2) puts("yes");
        else puts("no");
    }
    return 0;
} 

2.MEX

#include <bits/stdc++.h>
using namespace std;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
template<typename T>
inline void read(T &x) {
    static char c; x = 0; int sgn = 0;
    for (c = get(); c < '0' || c > '9'; c = get()) if (c == '-') sgn = 1;
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
    if (sgn) x = -x;
}

int test, n, p, x;
int e, h;

int main(void) {
    read(test);
    while (test--) {
        e = h = 0;
        read(n); read(p);
        for (int i = 1; i <= n; i++) {
            read(x);
            if (x >= p / 2) ++e;
            if (x <= p / 10) ++h;
        }
        if (e == 1 && h == 2) puts("yes");
        else puts("no");
    }
    return 0;
} 

3.CHEFCOUN
xjb构造就好了。。

using namespace std;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
template<typename T>
inline void read(T &x) {
    static char c; x = 0; int sgn = 0;
    for (c = get(); c < '0' || c > '9'; c = get()) if (c == '-') sgn = 1;
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
    if (sgn) x = -x;
}

const int N = 202020;
typedef unsigned ui;

int n, test;
ui a[N], mx, sum, S;
ui pre[N];

int main(void) {
    read(test);
    mx = (1ll << 32) - 1;
    while (test--) {
        read(n); sum = S = 0;
        S = mx;
        int i;
        for (i = 1; i <= n; i++) {
            if (S < 100001 + (n - i)) break;
            a[i] = 100000; S -= 100000;
        }
        a[i] = 2;
        for (++i; i <= n; i++) a[i] = 1;
        for (i = 1; i <= n; i++) printf("%d\n", a[i]);
        putchar('\n');
    }
    return 0;
} 

4.CHEFCOUN
贪心题。考虑把 a 插到b或者 b 插到a里面,只要合法就一直插。。
题意最开始好像有问题。。搞了很久的样子。

#include <bits/stdc++.h>
using namespace std;

const int N = 201010;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
inline void read(int &x) {
    static char c; x = 0;
    for (c = get(); c < '0' || c > '9'; c = get());
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
}
int test, n, a, b, x, y;
char ch[N];
struct cpp {
    int len, Ans;
    char ans[N];
    inline char &operator [](int x) {
        return ans[x];
    }

    inline bool operator <(const cpp &a) {
        return Ans < a.Ans;
    }
};
cpp Ans, tmp;

inline void Solve(int a, int b, char A, char B, int x, int y) {
    int i, c, ls, d = a / x, e = a % x; tmp.len = 0; tmp.Ans = 0;
    if (b < d) {
        for (c = 0; c < b; ++c) {
            for (int j = 0; j < x; j++) tmp[tmp.len++] = A;
            tmp[tmp.len++] = B;
        }
        ls = 0;
        for (i = b * (x + 1); i < n; i++) {
            if (ls == x) {
                tmp[tmp.len++] = '*';
                tmp.Ans++; ls = 0;
            }
            tmp[tmp.len++] = A; ++ls;
        }
        if (tmp.Ans < Ans.Ans) Ans = tmp;
    } else {
        b -= d;
        for (c = 0; c < d; ++c) {
            for (int j = 0; j < x; j++) {
                for (i = 0; i < y - (j == 0 && c != 0) && b; i++) --b, tmp[tmp.len++] = B;
                tmp[tmp.len++] = A;
            }
            tmp[tmp.len++] = B;
        }
        for (c = 0; c < e; ++c) {
            for (i = 0; i < y - (c == 0) && b; i++) --b, tmp[tmp.len++] = B;
            tmp[tmp.len++] = A;
        }
        ls = 0;
        for (int i = tmp.len - 1; i; i--)
            if (tmp[i] == B) ++ls;
            else break;
        for (int i = 0; i < b; i++) {
            if (ls == y) {
                tmp[tmp.len++] = '*';
                tmp.Ans++; ls = 0;
            }
            tmp[tmp.len++] = B; ++ls;
        }
        if (tmp.Ans < Ans.Ans) Ans = tmp;
    }
}

int main(void) {
    scanf("%d\n", &test);
    while (test--) {
        a = b = 0; scanf("%s", ch);
        n = strlen(ch);
        for (int i = 0; i < n; i++)
            if (ch[i] == 'a') ++a;
            else ++b;
        scanf("%d %d\n", &x, &y);
        Ans.Ans = N;
        Solve(a, b, 'a', 'b', x, y);
        Solve(b, a, 'b', 'a', y, x);
        int lsa = 0, lsb = 0;
        for (int i = 0; i < Ans.len; i++)
            putchar(Ans[i]);
        putchar('\n');
    }
    return 0;
} 

5.CHEFCOUN
因为总共只有两条最短路径,xjb判一判就好了。

#include <bits/stdc++.h>
using namespace std;

const int N = 301010;
typedef long long ll;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
template<typename T>
inline void read(T &x) {
    static char c; x = 0;
    for (c = get(); c < '0' || c > '9'; c = get());
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
}

template<typename T>
inline T Min(T a, T b) {
    return a < b ? a : b;
}

struct Cycle {
    vector<ll> val;
    int sz;
    ll sum;
    inline void Init(void) {
        val.clear(); read(sz);
        val.resize(sz + 3); sum = 0;
        val[0] = 0;
        for (int i = 1; i <= sz; i++) {
            read(val[i]); sum += val[i];
        }
        for (int i = 1; i <= sz; i++)
            val[i] += val[i - 1];
    }
    inline void Print(void) {
        for (int i = 1; i <= sz; i++) printf("%d ", val[i]);
        putchar('\n');
    }
    inline ll Dist(int x, int y) {
        if (x > y) swap(x, y);
        return Min(val[y - 1] - val[x - 1], sum - val[y - 1] + val[x - 1]);
    }
};
Cycle a[N];
int test, n, m, q, x, y, z, v1, c1, v2, c2;
int in[N], out[N];
ll val[N], dis[N];
ll sum, res, ans, S;
int p;

int main(void) {
    read(test);
    while (test--) {
        read(n); read(q); S = sum = 0; val[0] = 0;
        for (int i = 1; i <= n; i++) a[i].Init();
        for (int i = 1; i <= n; i++) {
            read(out[i]); read(in[i % n + 1]);
            read(z); val[i] = z; sum += z;
        }
        for (int i = 1; i <= n; i++) dis[i] = a[i].Dist(in[i], out[i]);
        for (int i = 1; i <= n; i++) {
            val[i] += val[i - 1];
            S += dis[i];
            dis[i] += dis[i - 1];
        }
        while (q--) {
            read(v1); read(c1); read(v2); read(c2);
            if (c1 > c2) {
                swap(c1, c2); swap(v1, v2);
            }
            p = a[c1].Dist(v1, out[c1]);
            p = a[c2].Dist(in[c2], v2);
            res = a[c1].Dist(v1, out[c1]) + val[c2 - 1] - val[c1 - 1] + a[c2].Dist(in[c2], v2) + dis[c2 - 1] - dis[c1];
            ans = res;
            res = a[c1].Dist(v1, in[c1]) + sum - val[c2 - 1] + val[c1 - 1] + a[c2].Dist(out[c2], v2) + S - dis[c2] + dis[c1 - 1];
            ans = Min(res, ans);
            printf("%lld\n", ans);
        }
    }
    return 0;
} 

6.MARRAYS
直接DP,对一个元素维护一个前缀和后缀,这样就没有绝对值的影响。就可以 O(1) 转移了。

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

typedef long long ll;

const int N = 1010101;
const long long INF = 1ll << 50;
typedef long long ll;
typedef pair<int, ll> P;

int n;
vector<int> a[N];
vector<ll> pre[N],suf[N];
vector<P> dp[N];

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
inline void read(int &x) {
    static char c; x = 0;
    for (c = get(); c < '0' || c > '9'; c = get());
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
}

inline void ReStore(int x,int y) {
    a[x].resize(y); pre[x].resize(y); suf[x].resize(y); dp[x].resize(y);
} 
inline bool cmp(P a,int b) {
    return a.first < b;
}

int main() {
    int t; read(t);
    while (t--)  {
        read(n);
        for (int i = 1; i <= n; i++) {
            int m, x; read(m); ReStore(i, m); 
            for (int j = 0; j<m; j++)  {
                read(a[i][j]);
                dp[i][j] = P(a[i][j], 0);
            }
        }
        for (int i = 2; i <= n; i++) {
            sort(dp[i - 1].begin(), dp[i - 1].end()); 
            int m = a[i - 1].size(); 
            pre[i - 1][0] = dp[i - 1][0].second - (ll)dp[i - 1][0].first * (i - 1); 
            suf[i - 1][m - 1] = dp[i - 1][m - 1].second + (ll)dp[i - 1][m - 1].first * (i - 1); 
            for (int j = 1; j < m; j++)
                pre[i - 1][j] = max(pre[i - 1][j - 1], dp[i - 1][j].second - (ll)dp[i - 1][j].first * (i - 1)); 
            for (int j = m - 2; ~j; j--)
                suf[i - 1][j] = max(suf[i - 1][j + 1], dp[i - 1][j].second + (ll)dp[i - 1][j].first * (i - 1)); 
            m = a[i].size(); int mm = a[i - 1].size(); 
            for (int j = 0; j < m; j++) {
                int nxt = (j + m - 1) % m, p = lower_bound(dp[i - 1].begin(), dp[i - 1].end(), a[i][j], cmp) - dp[i - 1].begin(); 
                if (a[i][j] <= dp[i - 1][0].first)
                    dp[i][nxt].second = suf[i - 1][0] - (ll)a[i][j] * (i - 1); 
                else if (a[i][j] >= dp[i - 1][mm - 1].first)
                    dp[i][nxt].second = pre[i - 1][mm - 1] + (ll)a[i][j] * (i - 1); 
                else
                    dp[i][nxt].second = max(pre[i - 1][p] + (ll)a[i][j] * (i - 1), suf[i - 1][p] - (ll)a[i][j] * (i - 1)); 
            }
        }
        ll ans = 0; 
        for (int i = 0; i < a[n].size(); i++)
            ans = max(ans, dp[n][i].second); 
        cout << ans << endl; 
        for (int i = 1; i <= n; i++) {
            a[i].clear(); pre[i].clear();
            suf[i].clear(); dp[i].clear();
        }
    }
    return 0; 
} 

7.POINTCN
Challenge 是真的做不来
8.SHTARR
又想起了CC的COT5

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
using namespace std;

const int N = 1010101;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
template<typename T>
inline void read(T &x) {
    static char c; x = 0;
    for (c = get(); c < '0' || c > '9'; c = get());
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
}
inline void reado(char &opt) {
    for (opt = get(); opt != '?' && opt != '+'; opt = get());
}

int mx[N << 2];
int ans[N << 2];
int l[N << 2], r[N << 2];
int a[N];
int n, q, x, y, z, test, L, R, res, Ans, MX, tmp, pos, t, p;
char opt;

template<typename T>
inline T Max(T a, T b) {
    return a > b ? a : b;
}
inline int Calc(int o, double v) {
    if (l[o] == r[o]) return mx[o] > v;
    if (v > mx[o << 1]) return Calc(o << 1 | 1, v);
    return Calc(o << 1, v) + ans[o] - ans[o << 1];
}
void Build(int o, int _l, int _r) {
    l[o] = _l; r[o] = _r;
    ans[o] = (a[_l] > 0); mx[o] = a[_l];
    if (_l == _r) return;
    int mid = (_l + _r) >> 1;
    Build(o << 1, _l, mid);
    Build(o << 1 | 1, mid + 1, _r);
    mx[o] = Max(mx[o << 1], mx[o << 1 | 1]);
    ans[o] = ans[o << 1] + Calc(o << 1 | 1, mx[o << 1]);
}
void Modify(int o, int pos, int x) {
    if (l[o] == r[o]) {
        mx[o] = x; ans[o] = 1;
        return;
    }
    int mid = (l[o] + r[o]) >> 1;
    if (pos <= mid) Modify(o << 1, pos, x);
    else Modify(o << 1 | 1, pos, x);
    mx[o] = Max(mx[o << 1], mx[o << 1 | 1]);
    ans[o] = ans[o << 1] + Calc(o << 1 | 1, mx[o << 1]);
}
inline void QAns(int o, int L, int R) {
    if (l[o] >= L && r[o] <= R) {
        tmp += Calc(o, MX);
        MX = Max(MX, mx[o]);
        return;
    }
    int mid = (l[o] + r[o]) >> 1;
    if (R <= mid) return QAns(o << 1, L, R);
    if (L > mid) return QAns(o << 1 | 1, L, R);
    QAns(o << 1, L, R); QAns(o << 1 | 1, L, R);
}
inline int QAns(int x) {
    tmp = 0; MX = -1; QAns(1, x, n + 1);
    return tmp;
}

int main(void) {
    read(test);
    while (test--) {
        read(n); read(q);
        for (int i = 1; i <= n; i++) read(a[i + 1]);
        Build(1, 1, n + 1);
        for (int i = 1; i <= q; i++) {
            reado(opt);
            if (opt == '+') {
                read(x); read(y);
                Modify(1, x + 1, a[x + 1] += y);
            } else {
                read(x); read(L); read(R);
                Modify(1, x, L - 1); res = QAns(x) - 1;
                Modify(1, x, R); t = QAns(x) - 1;
                Modify(1, x, R - 1); p = QAns(x) - 1;
                printf("%d\n", res - t + (p == t && p));
                Modify(1, x, a[x]);
            }
        }
    }
    return 0;
} 

9.LKYEDGE
枚举左端点 l 然后考虑建一颗以边存在时间为权值的最小生成树,那么会是lucky edge的边就是非树边,以及被他覆盖的边,直接暴力爬树就好了。
每次修改要缩点,因为后统计的一定会包含之前统计的里面。

#include <bits/stdc++.h>
using namespace std;

const int N = 10101;
const int M = 5050;
typedef pair<int, int> P;

inline char get(void) {
    static char buf[100000], *S = buf, *T = buf;
    if (S == T) {
        T = (S = buf) + fread(buf, 1, 100000, stdin);
        if (S == T) return EOF;
    }
    return *S++;
}
inline void read(int &x) {
    static char c; x = 0;
    for (c = get(); c <'0' || c > '9'; c = get());
    for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
}

struct edge {
    int to, next, id;
    edge (int t = 0, int n = 0, int i = 0):to(t), next(n), id(i) {}
};
edge G[M << 1];
int fa[N], rk[N], fat[N];
int n, m, p1, p2, x, y, z, Gcnt, test, clc, ccl, lca, Wcnt, r;
int head[N], vis[N], vst[N], pre[N];
int ans[N], id[N], dep[N], rak[N], num[N];
P E[M], E1[M];

inline int Head(int x) {
    if (vis[x] == clc) return head[x];
    vis[x] = clc; return head[x] = 0;
}
inline void AddEdge(int from, int to, int id = 0) {
    G[++Gcnt] = edge(to, Head(from), id); head[from] = Gcnt;
    G[++Gcnt] = edge(from, Head(to), id); head[to] = Gcnt;
}
inline int Fa(int x) {
    return fa[x] == x ? x : fa[x] = Fa(fa[x]);
}
inline int Merge(int x, int y) {
    static int f1, f2;
    f1 = Fa(x); f2 = Fa(y);
    if (f1 == f2) return false;
    if (rk[f1] < rk[f2]) swap(f1, f2);
    if (rk[f1] == rk[f2]) rk[f1]++;
    fa[f2] = f1; return true;
}
inline void dfs(int u, int f) {
    dep[u] = dep[f] + 1; vst[u] = ccl; fat[u] = f;
    for (int i = Head(u); i; i = G[i].next) {
        if (G[i].to != fat[u]) dfs(G[i].to, u);
        pre[G[i].to] = G[i].id;
    }
}
inline int LCA(int x, int y) {
    while (x != y) {
        if (dep[x] < dep[y]) swap(x, y);
        if (x != fa[x]) x = fa[x];
        else x = fat[x];
    }
    return x;
}

int main(void) {
    read(test);
    while (test--) {
        read(m); n = 0;
        for (int i = 0; i < m; i++) {
            read(x); read(y);
            E[i] = P(x, y); ans[i] = 0;
            id[n++] = x; id[n++] = y;
            dep[x] = dep[y] = 0;
        }
        sort(id, id + n);
        n = unique(id, id + n) - id;
        for (int i = 0; i < n; i++) rak[id[i]] = i + 1;
        for (int i = 0; i < m; i++) E[i] = P(rak[E[i].first], rak[E[i].second]);
        for (int l = 0; l < m; l++) {
            p1 = Gcnt = 0; ++clc;
            for (int i = 1; i <= n; i++) fa[i] = i;
            for (int i = l; i < m; i++) {
                if (Merge(E[i].first, E[i].second))
                    AddEdge(E[i].first, E[i].second, i);
                else {
                    num[p1] = i; E1[p1++] = E[i];
                }
            }
            ++ccl;
            for (int i = 1; i <= n; i++) {
                fa[i] = i;
            }
            for (int i = 0; i < p1; i++) {
                x = E1[i].first; y = E1[i].second;
                z = m - num[i]; ans[num[i]] += z;
                x = Fa(x); y = Fa(y); 
                if (vst[x] != ccl) dfs(x, 0);
                lca = LCA(x, y);
                if (y == lca || x == lca) {
                    if (x == lca) swap(x, y);
                    for (; dep[Fa(x)] > dep[lca]; x = r) {
                        if (Fa(x) == x) {
                            ans[pre[x]] += z; r = fat[x];
                        } else r = Fa(x);
                        fa[x] = fa[lca];
                    }
                } else {
                    for (; dep[Fa(x)] > dep[lca]; x = r) {
                        if (Fa(x) == x) {
                            ans[pre[x]] += z; r = fat[x];
                        } else r = Fa(x);
                        fa[x] = fa[lca];
                    }
                    x = y;
                    for (; dep[Fa(x)] > dep[lca]; x = r) {
                        if (Fa(x) == x) {
                            ans[pre[x]] += z; r = fat[x];
                        } else r = Fa(x);
                        fa[x] = fa[lca];
                    }
                }
            }
        }
        for (int i = 0; i < m; i++)
            printf("%d ", ans[i]);
        putchar('\n');
    }
    return 0;
} 

10.XORTREEH

数据集介绍:电力线目标检测数据集 一、基础信息 数据集名称:电力线目标检测数据集 图片数量: 训练集:2898张图片 验证集:263张图片 测试集:138张图片 总计:3299张图片 分类类别: 类别ID: 0(电力线) 标注格式: YOLO格式,包含对象标注信息,适用于目标检测任务。 数据格式:JPEG/PNG图片,来源于空中拍摄或监控视觉。 二、适用场景 电力设施监控与巡检: 数据集支持目标检测任务,帮助构建能够自动识别和定位电力线的AI模型,用于无人机或固定摄像头巡检,提升电力设施维护效率和安全性。 能源与公用事业管理: 集成至能源管理系统中,提供实时电力线检测功能,辅助进行风险 assessment 和预防性维护,优化能源分配。 计算机视觉算法研究: 支持目标检测技术在特定领域的应用研究,促进AI在能源和公用事业行业的创新与发展。 专业培训与教育: 数据集可用于电力行业培训课程,作为工程师和技术人员学习电力线检测与识别的重要资源。 三、数据集优势 标注精准可靠: 每张图片均经过专业标注,确保电力线对象的定位准确,适用于高精度模型训练。 数据多样性丰富: 包含多种环境下的电力线图片,如空中视角,覆盖不同场景条件,提升模型的泛化能力和鲁棒性。 任务适配性强: 标注格式兼容YOLO等主流深度学习框架,便于快速集成和模型开发,支持目标检测任务的直接应用。 实用价值突出: 专注于电力线检测,为智能电网、自动化巡检和能源设施监控提供关键数据支撑,具有较高的行业应用价值。
【弹簧阻尼器】基于卡尔曼滤波弹簧质量阻尼器系统噪声测量实时状态估计研究(Matlab代码实现)内容概要:本文围绕“基于卡尔曼滤波的弹簧质量阻尼器系统噪声测量与实时状态估计”展开研究,利用Matlab代码实现对系统状态的精确估计。重点在于应用卡尔曼滤波技术处理系统中存在的噪声干扰,提升对弹簧质量阻尼器系统动态行为的实时观测能力。文中详细阐述了系统建模、噪声特性分析及卡尔曼滤波算法的设计与实现过程,展示了滤波算法在抑制测量噪声、提高状态估计精度方面的有效性。同时,该研究属于更广泛的信号处理与状态估计技术应用范畴,适用于复杂动态系统的监控与控制。; 适合人群:具备一定控制系统理论基础和Matlab编程经验的高校研究生、科研人员及工程技术人员,尤其适合从事动态系统建模、状态估计与滤波算法研究的相关人员。; 使用场景及目标:①应用于机械、航空航天、自动化等领域中对振动系统状态的高精度实时估计;②为噪声环境下的传感器数据融合与状态预测提供算法支持;③作为卡尔曼滤波算法在实际物理系统中应用的教学与科研案例。; 阅读建议:建议读者结合Matlab代码实践,深入理解系统建模与滤波器设计的关键步骤,关注噪声建模与滤波参数调优对估计性能的影响,并可进一步拓展至扩展卡尔曼滤波(EKF)或无迹卡尔曼滤波(UKF)在非线性系统中的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值