Description
有n1n1个步兵和n2n2个骑兵,现在要将这n1+n2n1+n2个士兵排成一排,使得连续的步兵数量不超过k1k1且连续的骑兵数量不超过k2k2,每位士兵都不同,问方案数,结果模108108
Input
四个整数n1,n2,k1,k2(1≤n1,n2≤100,1≤k1,k2≤10)n1,n2,k1,k2(1≤n1,n2≤100,1≤k1,k2≤10)
Output
输出方案数,结果模108108
Sample Input
2 1 1 10
Sample Output
1
Solution
dp[i][j][x][y]dp[i][j][x][y]表示前ii名士兵中有名士兵且末尾连续士兵数量为xx,连续骑兵数量为的方案数,那么根据第i+1i+1个位置放置的兵种有以下转移:
dp[i+1][j+1][x+1][0]+=dp[i][j][x][y],j<n1,x<k1dp[i+1][j+1][x+1][0]+=dp[i][j][x][y],j<n1,x<k1
dp[i+1][j][0][y+1]+=dp[i][j][x][y],i−j<n2,y<k2dp[i+1][j][0][y+1]+=dp[i][j][x][y],i−j<n2,y<k2
答案即为∑x,ydp[n1+n2][n1][x][y]∑x,ydp[n1+n2][n1][x][y]
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
#define mod 100000000
int n1,n2,k1,k2,dp[205][105][11][11];
int main()
{
scanf("%d%d%d%d",&n1,&n2,&k1,&k2);
dp[0][0][0][0]=1;
for(int i=0;i<n1+n2;i++)
for(int j=0;j<=i&&j<=n1;j++)
for(int x=0;x<=k1;x++)
for(int y=0;y<=k2;y++)
{
if(j<n1&&x<k1)dp[i+1][j+1][x+1][0]=(dp[i+1][j+1][x+1][0]+dp[i][j][x][y])%mod;
if(i-j<n2&&y<k2)dp[i+1][j][0][y+1]=(dp[i+1][j][0][y+1]+dp[i][j][x][y])%mod;
}
int ans=0;
for(int x=0;x<=k1;x++)
for(int y=0;y<=k2;y++)
ans=(ans+dp[n1+n2][n1][x][y])%mod;
printf("%d\n",ans);
return 0;
}