HDU 5877 Weak Pair(dfs+BIT)

本文介绍了一种高效算法来解决特定类型的有根树问题。该算法通过树状数组进行路径查询,并利用离散化处理大数据范围,最终求得所有满足条件的弱有序对数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description
给出一个N个点的有根树,每个点有一个点权ai,定义有序对(u,v)是弱的当且仅当:
1.u是v的祖先节点
2.au*av<=k
求所有弱有序对的数量
Input
第一行一整数T表示用例组数,每组用例首先输入两个整数n和k,之后输入n个整数ai表示每个的点权,最后n-1行每行两个整数u和v表示两点在树上有一条边相连
(1<=n<=1e5,0<=ai<=1e9,0<=k<=1e18)
Output
对于每组用例,输出树上弱有序对的数量
Sample Input
1
2 3
1 2
1 2
Sample Output
1
Solution
对于每点v,考虑其对答案的贡献,也就是从v到根节点路径上所有点中满足条件的u点的个数,考虑到这条路径上的点对以v为根的子树中所有点也都可能有贡献,只要在dfs过程中把这些点都插入树状数组,每次对于v点,查询树状数组中有多少小于等于k/a[v]的点即可,回溯时消除之前插入的影响,注意到a[i]数据范围很大所以需要离散化,还有需要注意a[i]=0的情况
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
#define maxn 111111
vector<int>g[maxn];
int T,n,m,fa[maxn],res;
ll a[maxn],b[maxn],h[maxn<<1];
ll k,ans;
struct BIT 
{
    #define lowbit(x) (x&(-x))
    int b[maxn<<1];
    void init()
    {
        memset(b,0,sizeof(b));
    }
    void update(int x,int v)
    {
        while(x<=res)
        {
            b[x]+=v;
            x+=lowbit(x);
        }
    }
    int query(int x)
    {
        int ans=0;
        while(x)
        {
            ans+=b[x];
            x-=lowbit(x);
        }
        return ans;
    }
}bit;
void init()
{
    ans=0;
    bit.init();
    for(int i=1;i<=n;i++)g[i].clear();
    memset(fa,0,sizeof(fa));
}
void dfs(int u)
{
    ans+=bit.query(b[u]);
    bit.update(a[u],1);
    for(int i=0;i<g[u].size();i++)
    {
        int v=g[u][i];
        if(v!=fa[u])dfs(v);
    }
    bit.update(a[u],-1);
}
int main()
{
    scanf("%d",&T);
    while(T--)
    {
        init();
        scanf("%d%I64d",&n,&k);
        res=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%I64d",&a[i]);
            b[i]=a[i]==0?k+1:k/a[i];
            h[res++]=a[i],h[res++]=b[i];
        }
        sort(h,h+res);
        for(int i=1;i<=n;i++)
        {
            b[i]=lower_bound(h,h+res,b[i])-h+1;
            a[i]=lower_bound(h,h+res,a[i])-h+1;
        }
        for(int i=1;i<n;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            g[u].push_back(v),g[v].push_back(u);
            fa[v]=u;
        }
        for(int i=1;i<=n;i++)
            if(!fa[i])
            {
                dfs(i);
                break;
            }
        printf("%I64d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值