题目:http://poj.org/problem?id=2115
题意:有一个在k位无符号整数下的模型:for (variable = A; variable != B; variable += C) {statement;} , 问循环多少次。
题解模型: a 1 a_1 a1 + c 1 c_1 c1x = b 1 b_1 b1 (mod 2 k 2^k 2k)
用拓展欧几里德方法求出gcd最大公因数,再利用同余性质转化,求同余方程,
模型转化为 : c 1 c_1 c1x + y ⋅ \cdot ⋅ 2 k 2^k 2k = b 1 b_1 b1 - a 1 a_1 a1 ,求出x和y。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<math.h>
#define ll long long int
using namespace std;
ll x, y;
ll extend_gcd(ll a, ll b)
{
if(b == 0)
{
x = 1, y = 0;
return a;
}
ll r = extend_gcd(b, a % b);
ll t = x;
x = y;
y = t - (a / b) * y;
return r;
}
int main()
{
ll aa, bb, cc, kk;
while(cin >> aa >> bb >> cc >> kk && (aa + bb + cc + kk))
{
ll a = cc, b = (ll) 1 << kk, c = bb - aa;
ll k = (ll) 1 << kk;
ll p = extend_gcd(a, b);
if(c % p != 0) cout << "FOREVER" << endl;
else
{
x = (x * (c / p)) % k;
ll t = b/p;
if(t < 0) t = -t;
x = (x % t + t) % t;
cout << x << endl;
}
}
return 0;
}