一.题目链接:
POJ-2689
二.题目大意:
给出区间 [l, r].
求区间中相邻质数中距离最小的 与 距离最大的.
三.分析:
直接暴力肯定是不行的,注意到区间范围不大,自然想到离散化.
又因为对于合数 x 来说,它的最大质因数为
所以我们可以先求出 内的质数.
之后利用埃氏筛的思想,标记区间 [l, r] 内的质数.
四.代码实现:
#include <set>
#include <map>
#include <ctime>
#include <queue>
#include <cmath>
#include <stack>
#include <bitset>
#include <vector>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define eps 1e-6
#define lc k * 2
#define rc k * 2 + 1
#define pi acos(-1.0)
#define ll long long
#define ull unsigned long long
using namespace std;
const int M = (int)1e5;
const int mod = (int)1e9 + 7;
const ll inf = 0x3f3f3f3f3f3f3f3f;
int m, prime[M + 5], v[M + 5];
bool is_prime[M * 10 + 5];
void Get_Prime(int n = 46340)
{
for(int i = 2; i <= n; ++i)
{
if(!v[i])
{
v[i] = i;
prime[++m] = i;
}
for(int j = 1; j <= m; ++j)
{
if(prime[j] > v[i] || i * prime[j] > n) break;
v[i * prime[j]] = prime[j];
}
}
}
int main()
{
Get_Prime();
ll l, r;
while(~scanf("%lld %lld", &l, &r))
{
memset(is_prime, 1, sizeof(is_prime));
for(int i = 1; i <= m; ++i)
{
for(int j = max(2, (int)ceil(1.0 * l / prime[i])); j <= (int)floor(1.0 * r / prime[i]); ++j)
{
is_prime[prime[i] * j - l] = 0;
}
}
if(l == 1) is_prime[0] = 0;
ll p = 0, Min = inf, Max = -inf;
ll num1, num2, num3, num4;
for(ll i = l; i <= r; ++i)
{
if(!is_prime[i - l]) continue;
if(p)
{
if(i - p < Min) num1 = p, num2 = i, Min = i - p;
if(i - p > Max) num3 = p, num4 = i, Max = i - p;
}
p = i;
}
if(Min == inf)
printf("There are no adjacent primes.\n");
else
printf("%lld,%lld are closest, %lld,%lld are most distant.\n", num1, num2, num3, num4);
}
return 0;
}