dfs序+树链剖分,超详细讲解+原理分析+模板(看不懂来打我)

本文详细介绍了树链剖分的原理,涉及dfs序、时间戳在链式前向星和线段树中的运用,以及如何解决区间修改、查询问题。通过模板题和LCA问题实例,配合视频教学,帮助读者深入理解并掌握这一技术。

dfs序+树链剖分

一. 树链剖分能解决什么问题?

在这里插入图片描述

二.树链剖分前置知识

1.dfs序

在这里插入图片描述

2. 时间戳

按照dfs第一次访问的顺序,给每一个节点标记上时间戳
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210707164442392.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1RoZVdheUZvckRyZWFt,size_16,color_FFFFFF,t_70

3.dfs序和时间戳有什么用处

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
开始剖分,跑第二次dfs的作用,也即dfs1和dfs2
在这里插入图片描述
于是你需要这些数组来记录

struct Edge{
   
   
	int  v;//节点编号 
	int next;
}edge[Maxn*2];//注意开二倍,因为是无相边 
int head[Maxn];

int fa[Maxn];//记录父节点 
int dep[Maxn];//记录节点深度 
int son[Maxn];//记录重儿子
int siz[Maxn];//记录以该节点为根节点的树的大小(节点个数包括根节点) 
int top[Maxn];//每一个节点所属重链的根节点 
int dfn[Maxn];//每一个节点的时间戳
int w[Maxn];//dfs序后节点的权值,用线段树维护
int tim = 0;//时间戳计数器
int cnt = 0;
int v[Maxn];//存放所有节点的权值 


int sum[Maxn*4];//线段树区间数组维护w[]区间和 
int lazy[Maxn*4];//维护区间加的延迟数据,以便于延迟下方 
int lpos[Maxn*4],rpos[Maxn*4];//线段树区间的左右端点

链式前向星存图:

/*链式前向星建图,无向边*/
void build(int u,int v){
   
   
	edge[++cnt].v = v;
    edge[cnt].next = head[u];
    head[u] = cnt;
    edge[++cnt].v = u;
    edge[cnt].next = head[v];
    head[v] = cnt;
}

dfs1

/*报一遍dfs记录重儿子,节点深度,以及树的大小*/
void dfs1(int u,int f){
   
   
	fa[u] = f;
	dep[u] = dep[f]+1;
	siz[u] = 1;
	int maxsonsize = -1;//记录重儿子的大小
	for(int i=head[u];i!=-1;i=edge[i].next){
   
   
		int v=edge[i].v;//与u有边的节点 
		if(v==f) continue;//如果v时u的父亲,直接跳过
		/*否则就是u的儿子,dfs下去*/
		dfs1(v,u);
		siz[u]+=siz[v];
		/*更新u的重儿子*/
		if(siz[v]>maxsonsize){
   
   
			maxsonsize = siz[v];
			son[u] = v;
		}
	} 
}

dfs2

/*再跑一边dfs,完成树链剖分*/
void dfs2(int u,int t){
   
   
	dfn[u] = ++tim;//dfs序 
	top[u] = t;//u所属重链的祖先节点
	w[tim] = v[u];//dfs序后的节点权值
	/*没有重儿子,代表时根节点,直接return*/
	if(!son[u]) return ;
	dfs2(son[u],t);
	for(int i=head[u];i!=-1;i=edge[i].next){
   
   
		int v = edge[i].v;
		//如果v时u的父节点,或者v时u的重儿子(已经遍历过了) 
		if(v==fa[u]||v==son[u]) continue;
		/*否则以该节点为新的重链的祖先,继续dfs序*/
		else dfs2(v,v); 
	}
	return ;
}

线段树的区间修改和查询,对链进行操作

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
操作1
在这里插入图片描述
操作2
和操作1有一点不同,把modif()改为query()即可
在这里插入图片描述

三.树链剖分练习题

1.模板题

AC代码:

/*轻重链剖分/树链剖分*/
#include<bits/stdc++.h>
#define ls dep<<1
#define rs dep<<1|1
using namespace std;
const int Maxn = 1e5+10;
int N,
<think>我们使用树链剖分(重链剖分)将树分割成链,然后利用DFS(实际上是剖分后的DFS)将树结构转化为线性列,然后使用线段树维护列上的权值。这样,子树查询就转化为区间查询,节点更新就转化为单点更新。 树链剖分DFS:在剖分DFS中,我们优先遍历重儿子,这样保证重链上的节点在DFS中是连续的。同时,每个子树在DFS中也是连续的(因为DFS遍历子树时是连续的)。因此,子树查询可以转化为区间查询。 步骤: 1. 第一次DFS:计算每个节点的父节点、深度、重儿子、子树大小。 2. 第二次DFS:确定DFS(时间戳),同时记录每个节点所在链的顶端节点(用于路径查询,但本题只需要子树查询,所以这一步可以简化,但我们还是按标准剖分来做)。 3. 建立线段树:在DFS上建立线段树,支持单点更新和区间求和。 子树查询:对于节点u,其子树对应的区间为[in[u], out[u]](即DFS进入和退出的时间戳)。注意:在树链剖分中,由于优先遍历重儿子,子树节点在DFS中仍然是连续的。 因此,我们可以使用线段树来维护这个区间和。 伪代码(Python风格)如下: ```python import sys sys.setrecursionlimit(200000) class SegmentTree: def __init__(self, data): self.n = len(data) self.size = 1 while self.size < self.n: self.size *= 2 self.tree = [0] * (2 * self.size) # 构建线段树,初始数据 for i in range(self.n): self.tree[self.size + i] = data[i] for i in range(self.size - 1, 0, -1): self.tree[i] = self.tree[2*i] + self.tree[2*i+1] def update(self, index, value): # 单点更新:将位置index的值改为value(注意:这里是直接赋值,如果是增加则需要调整) # 但通常我们支持增加一个差值,这里按需求,我们假设是更新为新的值,所以需要知道旧值?或者我们设计为增加一个增量? # 根据问题,节点改变权值,我们可以用增量更新。但为了通用,这里我们实现为单点设置值,但需要知道原值?或者我们设计为传入增量(更符合动态更新)。 # 这里我们实现为增量更新(delta) # index: 原始数组中的位置(0-indexed) pos = index + self.size self.tree[pos] += value # 增加一个增量 while pos > 1: pos //= 2 self.tree[pos] = self.tree[2*pos] + self.tree[2*pos+1] def query(self, l, r): # 区间查询 [l, r] (闭区间) l += self.size r += self.size res = 0 while l <= r: if l % 2 == 1: res += self.tree[l] l += 1 if r % 2 == 0: res += self.tree[r] r -= 1 l //= 2 r //= 2 return res # 树链剖分部分 n = 100000 graph = [[] for _ in range(n+1)] # 第一次DFS:计算父节点、深度、子树大小、重儿子 parent = [0] * (n+1) depth = [0] * (n+1) size = [0] * (n+1) heavy = [-1] * (n+1) # 重儿子,初始化为-1 def dfs1(u, p, d): parent[u] = p depth[u] = d size[u] = 1 max_size = 0 for v in graph[u]: if v == p: continue dfs1(v, u, d+1) size[u] += size[v] if size[v] > max_size: max_size = size[v] heavy[u] = v # 第二次DFS:确定DFS(时间戳)和重链的顶端 head = [0] * (n+1) # 链的顶端节点 pos = [-1] * (n+1) # 节点在DFS中的位置(时间戳) cur_time = 0 def dfs2(u, h): global cur_time head[u] = h pos[u] = cur_time cur_time += 1 # 如果有重儿子,先遍历重儿子 if heavy[u] != -1: dfs2(heavy[u], h) for v in graph[u]: if v == parent[u] or v == heavy[u]: continue dfs2(v, v) # 轻儿子,自己作为新链的顶端 # 初始化 def init_tree(root): dfs1(root, 0, 0) dfs2(root, root) # 初始化一个长度为n(节点数)的数组,初始权值,假设为0,或者根据实际输入 arr = [0] * n # 注意:节点从1开始,时间戳从0到n-1 seg_tree = SegmentTree(arr) return seg_tree, pos, head # 返回线段树和位置数组 # 更新节点u的权值(增加delta) def update_node(seg_tree, u, delta): idx = pos[u] # 节点u在线段树中的位置 seg_tree.update(idx, delta) # 查询子树u的权值和:子树u对应的区间为 [pos[u], pos[u]+size[u]-1] ?注意:在树链剖分DFS中,子树u的节点在区间[pos[u], pos[u]+size[u]-1]内吗? # 实际上,在第二次DFS中,我们优先遍历重儿子,然后轻儿子。子树u的DFS区间是连续的,因为递归完子树后才会遍历下一个子树。所以子树u的区间为 [pos[u], pos[u] + size[u] - 1]。 def query_subtree(seg_tree, u): l = pos[u] r = pos[u] + size[u] - 1 return seg_tree.query(l, r) # 注意:这里线段树的区间是[0, n-1],所以直接使用pos[u]和pos[u]+size[u]-1即可。 ``` ### 注意点: - 树链剖分DFS保证了每个子树是连续的,所以我们可以用区间[pos[u], pos[u]+size[u]-1]表示子树。 - 线段树支持区间求和和单点更新(增量更新)。如果节点权值改变为新的值,则需要计算增量(新值-旧值)然后更新。 ### 时间复杂度: - 预处理:两次DFS,O(n) - 更新:O(log n) - 查询:O(log n) ### 与树状数组+DFS的对比: - 树状数组+DFS(普通DFS)同样可以做到,且树状数组常数更小,代码更简单。 - 树链剖分的主要优势在于可以同时支持路径查询(而不仅仅是子树查询)。如果问题需要查询路径上的权值和,树链剖分就更有优势。 ### 总结: 对于子树查询,树状数组+普通DFS已经足够高效。树链剖分+线段树也可以实现,但代码稍复杂,但扩展性强(支持路径查询)。本题要求子树查询,两种方法均可,但树链剖分在这里有点“大材小用”。 §§相关问题§§ 1. 树链剖分中重链和轻链的作用是什么?为什么优先遍历重儿子? 2. 除了子树查询,树链剖分还能支持哪些类型的查询和操作? 3. 如果树的结构是动态变化的(如添加或删除边),如何维护树链剖分? 4. 线段树和树状数组在实现子树查询时各自的优缺点是什么?</think>对于树结构不变、节点数不超过 100,000 的场景,使用 **线段树 + 树链剖分** 是高效支持子树权值查询和节点权值更新的解决方案。树链剖分将树结构转化为线性列,线段树则提供高效的区间查询和单点更新能力。 ### 解决方案步骤: 1. **树链剖分预处理**: - **第一次 DFS**:计算每个节点的父节点、深度、子树大小(`size[u]`)和重儿子(子树最大的子节点) - **第二次 DFS**:生成 DFS (优先遍历重儿子),记录节点入时间戳 `dfn[u]` 和子树结束时间 `end[u]`(子树节点在 DFS 中连续) 2. **线段树构建**: - 基于 DFS 构建线段树,叶子节点存储原始节点权值 - 支持单点更新(节点权值修改)和区间查询(子树权值和) ### 代码实现(Python 风格) ```python import sys sys.setrecursionlimit(200000) class SegmentTree: def __init__(self, n): self.n = n self.size = 1 while self.size < n: self.size *= 2 self.tree = [0] * (2 * self.size) def update(self, index, delta): """单点更新:位置 index 增加 delta""" i = index + self.size self.tree[i] += delta while i > 1: i //= 2 self.tree[i] = self.tree[2*i] + self.tree[2*i+1] def query(self, l, r): """区间查询 [l, r] 的和""" l += self.size r += self.size res = 0 while l <= r: if l % 2 == 1: res += self.tree[l] l += 1 if r % 2 == 0: res += self.tree[r] r -= 1 l //= 2 r //= 2 return res # 树链剖分预处理 n = 100000 # 最大节点数 graph = [[] for _ in range(n+1)] parent = [0] * (n+1) # 父节点 depth = [0] * (n+1) # 深度 size = [0] * (n+1) # 子树大小 heavy = [-1] * (n+1) # 重儿子 dfn = [0] * (n+1) # DFS时间戳 end = [0] * (n+1) # 子树结束时间戳 cur_time = 0 def dfs1(u, p, d): """第一次 DFS:计算 size/heavy""" parent[u] = p depth[u] = d size[u] = 1 max_size = 0 for v in graph[u]: if v == p: continue dfs1(v, u, d+1) size[u] += size[v] if size[v] > max_size: max_size = size[v] heavy[u] = v def dfs2(u, head): """第二次 DFS:生成 DFS """ global cur_time dfn[u] = cur_time cur_time += 1 # 优先遍历重儿子 if heavy[u] != -1: dfs2(heavy[u], head) # 重儿子继承当前链头 for v in graph[u]: if v == parent[u] or v == heavy[u]: continue dfs2(v, v) # 轻儿子作为新链头 end[u] = cur_time - 1 # 子树结束时间 # 初始化树链剖分 def init_tree(root=1): dfs1(root, 0, 0) dfs2(root, root) # 根节点作为第一条链的链头 return SegmentTree(cur_time) # 创建线段树 # 更新节点 u 的权值 (新值 new_val) def update_node(seg_tree, u, new_val, old_val): delta = new_val - old_val seg_tree.update(dfn[u], delta) # 查询子树 u 的权值和 def query_subtree(seg_tree, u): return seg_tree.query(dfn[u], end[u]) # 使用示例 if __name__ == "__main__": # 假设树已构建在 graph 中,root=1 seg_tree = init_tree() # 初始化节点权值 (假设存储在 node_val 数组) for u in range(1, n+1): seg_tree.update(dfn[u], node_val[u]) # 示例:更新节点 5 权值为 10 (旧值假设为 7) update_node(seg_tree, 5, 10, 7) # 示例:查询子树 3 的权值和 print(query_subtree(seg_tree, 3)) ``` ### 时间复杂度分析 | 操作 | 时间复杂度 | 说明 | |--------------|------------|--------------------------| | 树链剖分预处理 | O(n) | 两次 DFS 遍历 | | 单点权值更新 | O(log n) | 线段树单点更新 | | 子树权值查询 | O(log n) | 线段树区间查询 | ### 优势与适用场景 1. **树链剖分优势**: - 将子树查询转化为 **连续区间查询**(`[dfn[u], end[u]]`) - DFS 连续性由重链优先遍历保证 2. **线段树优势**: - O(log n) 高效区间求和 - 支持动态点更新 3. **扩展性**: - 可扩展支持路径查询(通过跳链查询) - 可支持其他聚合操作(最大值、最小值等) 此方案在节点数 100,000 时完全可行,预处理 O(n),每次操作 O(log n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值