Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.
Formally the function should:
Return true if there exists i, j, k
such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.
Your algorithm should run in O(n) time complexity and O(1) space complexity.
Examples:
Given [1, 2, 3, 4, 5],
return true.
Given [5, 4, 3, 2, 1],
return false.
题目分析:
法1:容易联想到nlogn求LIS的方法,这里只要判断是否存在长度为3的上升子序列,所以O1空间,On时间即可
class Solution {
public boolean increasingTriplet(int[] nums) {
int n = nums.length;
if (n < 3) {
return false;
}
int top = 0;
int[] stk = new int[5];
stk[++ top] = nums[0];
for (int i = 1; i < n; i++) {
if (nums[i] > stk[top]) {
stk[++ top] = nums[i];
} else {
for (int j = 1; j <= top; j++) {
if (stk[j] >= nums[i]) {
stk[j] = nums[i];
break;
}
}
}
if (top == 3) {
return true;
}
}
return false;
}
}法2:直接维护当前最小和次小,如果某次不能更新,则说明存在
class Solution {
public boolean increasingTriplet(int[] nums) {
int ma = 2147483647, mi = 2147483647;
for (int i = 0; i < nums.length; i++) {
if (nums[i] <= mi) {
mi = nums[i];
} else if (nums[i] <= ma) {
ma = nums[i];
} else {
return true;
}
}
return false;
}
}

本文介绍了一种高效算法,用于检测一个未排序数组中是否存在长度为3的递增子序列。通过两种方法实现这一目标,一种是利用栈结构进行处理,另一种是通过维护两个变量来跟踪最小值和次小值。
5万+

被折叠的 条评论
为什么被折叠?



