LLM主流框架:Causal Decoder、Prefix Decoder和Encoder-Decoder

本文详细介绍了Transformer模型中的mask机制,包括paddingmask和sequencemask,并对比了CausalDecoder、PrefixDecoder和EncoderDecoder架构在自注意力中的应用,以及它们在生成文本时的不同限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文将介绍如下内容:

  • transformer中的mask机制
  • Causal Decoder
  • Prefix Decoder
  • Encoder Decoder
  • 总结

一、transformer中的mask机制

在Transformer模型中,mask机制是一种用于在self-attention中的技术,用以控制不同token之间的注意力交互。具体来说,Transformer中使用两种类型的mask:padding masksequence mask**。**

1、Padding mask(填充掩码)

Padding mask(填充掩码):在自注意力机制中,句子中的所有单词都会参与计算。但是,在实际的句子中,往往会存在填充符(比如-1),用来填充句子长度不够的情况。Padding mask就是将这些填充符对应的位置标记为0,以便在计算中将这些位置的单词忽略掉。
例如,假设我们有一个batch_size为3、句子长度为5的输入序列:

[
    [1, 2, 3, -1, -1], 
    [2, 3, -1, 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值