大数定律和中心极限定理

The Law of Large Numbers (LLN) and the Central Limit Theorem (CLT) are two fundamental concepts in probability theory and statistics.

Law of Large Numbers (LLN):
The Law of Large Numbers states that as the size of a sample increases, the sample mean will get closer to the expected value (population mean) of the distribution. In other words, with a larger number of trials or observations, the average of the results becomes more accurate and converges to the true mean.
样本足够大,样本均值会趋向于总体均值

Central Limit Theorem (CLT):
The Central Limit Theorem states that the distribution of the sample mean of a sufficiently large number of independent, identically distributed(i.i.d) random variables approaches a normal distribution (Gaussian distribution), regardless of the original distribution of the variables. This is true as long as the sample size is large enough.当样本足够大,均值近似服从正态分布

Key Differences:

  1. Purpose:

    • LLN focuses on the convergence of the sample mean to the expected value as the sample size increases.
    • CLT focuses on the shape of the distribution of the sample mean, indicating that it becomes approximately normal regardless of the original distribution.
  2. Sample Size:

    • LLN requires a large sample size for the sample mean to approximate the population mean closely.
    • CLT requires a sufficiently large sample size for the distribution of the sample mean to become normal.
  3. Distribution:

    • LLN does not specify the distribution of the sample mean, only its convergence to the population mean.
    • CLT specifies that the distribution of the sample mean will be approximately normal, even if the original data distribution is not normal.

In summary, while both the Law of Large Numbers and the Central Limit Theorem deal with the behavior of sample means as the sample size increases, LLN is concerned with the accuracy of the sample mean in estimating the population mean, whereas CLT is concerned with the distribution of the sample mean becoming normal.

%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%> <!DOCTYPE html> <html大数定律中心极限定理概率论中的两个重要定理,它们的意义> <head> <meta charset="UTF-8"> <title>Edit User</title> </head> <body> <h1如下: 1. 大数定律:当独立同分布的随机变量的样本数趋近于无>Edit User</h1> <form action="user" method="post"> <input type="hidden" name="action" value穷大时,样本均值趋近于总体均值。这个定理告诉我们,当我们进行大量="update"/> <input type="hidden" name="id" value="<%= request.getAttribute("user").getId() %>"/> <p><label>Username: <input type="text" name="username" value="<%= request.getAttribute("user").getUsername() %>"/></实验或观察时,样本均值会趋近于真实均值,因此我们可以通过实验或观label></p> <p><label>Password: <input type="password" name="password" value="<%= request.getAttribute("user察来对总体进行估计。 2. 中心极限定理:当独立同分布的随机变量").getPassword() %>"/></label></p> <p><label>Email: <input type="email" name="email" value="<的样本数足够大时,样本均值的分布趋近于正态分布。这个定理告%= request.getAttribute("user").getEmail() %>"/></label></p> <p><input type="submit" value="Save"/></p诉我们,当我们进行大量实验或观察时,样本均值的分布会趋近于正态分> </form> <p><a href="user?action=list">Back to List</a></p> </body> </html布,因此我们可以使用正态分布来描述样本均值的分布情况,从而进行统计推> ``` 在这里,我们使用了 JSP 来呈现数据接收用户的输入。 好了,以上就是断假设检验等操作。 总的来说,大数定律中心极限定理为我们提供一个基于 MVC 三层架构的 JavaWeb 项目的示例代码。注意,这只是一个简单的示例,实际的项目中可能需要更多的业务逻辑数据验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值