论文笔记Enhancing Medical Image Segmentation with TransCeption: A Multi-Scale Feature Fusion Approach

TransCeption是一种新的医学图像分割方法,通过改进的ResInceptionPatchMerging模块捕捉多尺度表示,MultiBranchTransformerBlock强化通道间的相互作用,Intra-stageFeatureFusion增强同一阶段的特征融合,以及DualTransformerBridge整合不同尺度信息。这种方法提高了模型的性能,尤其是在处理医学图像时。

使用TransCeption增强医学图像分割:一种多尺度特征融合方法

本工作中提出的设计基于三个核心原则:

(1)重新设计了编码器中的补丁合并模块,采用了ResInception Patch Merging(RIPM)算法。多分支变压器(MB变压器)采用与RIPM输出相同的分支数。结合这两个模块使模型能够在单个阶段内捕获多尺度表示。

(2)我们构建了一个阶段内特征融合(IFF)模块MB变换器,以增强聚合的特征图从所有的分支,特别是专注于所有尺度的不同通道之间的相互作用。

(3)与只包含令牌式自我注意力的桥相比,我们提出了一个双变压器桥,它还包括通道式自我注意力,以从双重角度利用不同阶段尺度之间的相关性。

1) ResInception Patch Merging (RIPM): 

        RIPM模块:在基于常规变换器的U-Net模型中,使用P ×P的卷积运算在解码器的每个阶段执行补丁合并过程,然后将所得令牌序列馈送到稍后阶段的变换器块中。然而,在每个阶段具有固定块大小的块合并只能捕获单尺度特征。因此,为了增强补丁合并模块捕获的信息的表示,我们遵循Inception模块的思想,在原有的3 × 3卷积补丁嵌入模块之外,进一步添加了5×5和7×7两个补丁嵌入分支。因此,嵌入的特征图从多个路径(在我们的设计中为三个)生成,以在每个补丁合并阶段对多尺度表示进行建模。此外,以并行方式引入附加卷积层显著增加了模型复杂度,这导致硬件的更高计算成本和存储器需求。

        我们使用RIPM模块来取代Inception模块。特别是,两个堆叠的3×3卷积层相当于一个5 × 5卷积层(类似地,三个堆叠

The field of 3D point cloud semantic segmentation has been rapidly growing in recent years, with various deep learning approaches being developed to tackle this challenging task. One such approach is the U-Next framework, which has shown promising results in enhancing the semantic segmentation of 3D point clouds. The U-Next framework is a small but powerful network that is designed to extract features from point clouds and perform semantic segmentation. It is based on the U-Net architecture, which is a popular architecture used in image segmentation tasks. The U-Next framework consists of an encoder and a decoder, with skip connections between them to preserve spatial information. One of the key advantages of the U-Next framework is its ability to handle large-scale point clouds efficiently. It achieves this by using a hierarchical sampling strategy that reduces the number of points in each layer, while still preserving the overall structure of the point cloud. This allows the network to process large-scale point clouds in a more efficient manner, which is crucial for real-world applications. Another important aspect of the U-Next framework is its use of multi-scale feature fusion. This involves combining features from different scales of the point cloud to improve the accuracy of the segmentation. By fusing features from multiple scales, the network is able to capture both local and global context, which is important for accurately segmenting complex 3D scenes. Overall, the U-Next framework is a powerful tool for enhancing the semantic segmentation of 3D point clouds. Its small size and efficient processing make it ideal for real-time applications, while its multi-scale feature fusion allows it to accurately segment complex scenes. As the field of 3D point cloud semantic segmentation continues to grow, the U-Next framework is likely to play an increasingly important role in advancing this area of research.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值