CVPR-2024 扩散模型(Diffusion Model)相关论文 PART1(83篇)

CVPR-2024 扩散模型(Diffusion Model)相关论文 PART1(83篇)

在这里插入图片描述

Alchemist: Parametric Control of Material Properties with Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/00af847b59

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Sharma_Alchemist_Parametric_Control_of_Material_Properties_with_Diffusion_Models_CVPR_2024_paper.html)

CGI-DM: Digital Copyright Authentication for Diffusion Models via Contrasting Gradient Inversion

文章解读: http://www.studyai.com/xueshu/paper/detail/02650e0007

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Wu_CGI-DM_Digital_Copyright_Authentication_for_Diffusion_Models_via_Contrasting_Gradient_CVPR_2024_paper.html)

DiffusionMTL: Learning Multi-Task Denoising Diffusion Model from Partially Annotated Data

文章解读: http://www.studyai.com/xueshu/paper/detail/02db6a9f39

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Ye_DiffusionMTL_Learning_Multi-Task_Denoising_Diffusion_Model_from_Partially_Annotated_Data_CVPR_2024_paper.html)

InstructVideo: Instructing Video Diffusion Models with Human Feedback

文章解读: http://www.studyai.com/xueshu/paper/detail/043708c70a

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Yuan_InstructVideo_Instructing_Video_Diffusion_Models_with_Human_Feedback_CVPR_2024_paper.html)

Training Diffusion Models Towards Diverse Image Generation with Reinforcement Learning

文章解读: http://www.studyai.com/xueshu/paper/detail/04834c9c62

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Miao_Training_Diffusion_Models_Towards_Diverse_Image_Generation_with_Reinforcement_Learning_CVPR_2024_paper.html)

BIVDiff: A Training-Free Framework for General-Purpose Video Synthesis via Bridging Image and Video Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/0837af0cbe

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Shi_BIVDiff_A_Training-Free_Framework_for_General-Purpose_Video_Synthesis_via_Bridging_CVPR_2024_paper.html)

SVGDreamer: Text Guided SVG Generation with Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/08b09904ac

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Xing_SVGDreamer_Text_Guided_SVG_Generation_with_Diffusion_Model_CVPR_2024_paper.html)

Layout-Agnostic Scene Text Image Synthesis with Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/0a49a8f854

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhangli_Layout-Agnostic_Scene_Text_Image_Synthesis_with_Diffusion_Models_CVPR_2024_paper.html)

Building Bridges across Spatial and Temporal Resolutions: Reference-Based Super-Resolution via Change Priors and Conditional Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/0d40aa4b71

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Dong_Building_Bridges_across_Spatial_and_Temporal_Resolutions_Reference-Based_Super-Resolution_via_CVPR_2024_paper.html)

TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/0da6627c2b

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Huang_TFMQ-DM_Temporal_Feature_Maintenance_Quantization_for_Diffusion_Models_CVPR_2024_paper.html)

360DVD: Controllable Panorama Video Generation with 360-Degree Video Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/0f48413a14

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Wang_360DVD_Controllable_Panorama_Video_Generation_with_360-Degree_Video_Diffusion_Model_CVPR_2024_paper.html)

Inversion-Free Image Editing with Language-Guided Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/0f5ea8782c

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Xu_Inversion-Free_Image_Editing_with_Language-Guided_Diffusion_Models_CVPR_2024_paper.html)

Towards More Accurate Diffusion Model Acceleration with A Timestep Tuner

文章解读: http://www.studyai.com/xueshu/paper/detail/100739f53d

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Xia_Towards_More_Accurate_Diffusion_Model_Acceleration_with_A_Timestep_Tuner_CVPR_2024_paper.html)

StableVITON: Learning Semantic Correspondence with Latent Diffusion Model for Virtual Try-On

文章解读: http://www.studyai.com/xueshu/paper/detail/102ef503be

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Kim_StableVITON_Learning_Semantic_Correspondence_with_Latent_Diffusion_Model_for_Virtual_CVPR_2024_paper.html)

Prompt-Free Diffusion: Taking “Text” out of Text-to-Image Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/131cf98157

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Xu_Prompt-Free_Diffusion_Taking_Text_out_of_Text-to-Image_Diffusion_Models_CVPR_2024_paper.html)

CrowdDiff: Multi-hypothesis Crowd Density Estimation using Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/13cfcf43c9

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Ranasinghe_CrowdDiff_Multi-hypothesis_Crowd_Density_Estimation_using_Diffusion_Models_CVPR_2024_paper.html)

Image Neural Field Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/13d6d11f82

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Chen_Image_Neural_Field_Diffusion_Models_CVPR_2024_paper.html)

DiffSCI: Zero-Shot Snapshot Compressive Imaging via Iterative Spectral Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/15b04c6214

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Pan_DiffSCI_Zero-Shot_Snapshot_Compressive_Imaging_via_Iterative_Spectral_Diffusion_Model_CVPR_2024_paper.html)

Bidirectional Autoregessive Diffusion Model for Dance Generation

文章解读: http://www.studyai.com/xueshu/paper/detail/171276f3e0

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Bidirectional_Autoregessive_Diffusion_Model_for_Dance_Generation_CVPR_2024_paper.html)

Neural Sign Actors: A Diffusion Model for 3D Sign Language Production from Text

文章解读: http://www.studyai.com/xueshu/paper/detail/183499c993

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Baltatzis_Neural_Sign_Actors_A_Diffusion_Model_for_3D_Sign_Language_CVPR_2024_paper.html)

DiffuseMix: Label-Preserving Data Augmentation with Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/18ca8bde75

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Islam_DiffuseMix_Label-Preserving_Data_Augmentation_with_Diffusion_Models_CVPR_2024_paper.html)

SimAC: A Simple Anti-Customization Method for Protecting Face Privacy against Text-to-Image Synthesis of Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/18ea2aefa5

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Wang_SimAC_A_Simple_Anti-Customization_Method_for_Protecting_Face_Privacy_against_CVPR_2024_paper.html)

Point Cloud Pre-training with Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/1f5c5b6783

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zheng_Point_Cloud_Pre-training_with_Diffusion_Models_CVPR_2024_paper.html)

Rethinking Diffusion Model for Multi-Contrast MRI Super-Resolution

文章解读: http://www.studyai.com/xueshu/paper/detail/1fd6ad35fb

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Li_Rethinking_Diffusion_Model_for_Multi-Contrast_MRI_Super-Resolution_CVPR_2024_paper.html)

Residual Denoising Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/22782f49db

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Liu_Residual_Denoising_Diffusion_Models_CVPR_2024_paper.html)

Generate Subgoal Images before Act: Unlocking the Chain-of-Thought Reasoning in Diffusion Model for Robot Manipulation with Multimodal Prompts

文章解读: http://www.studyai.com/xueshu/paper/detail/23f9828fd7

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Ni_Generate_Subgoal_Images_before_Act_Unlocking_the_Chain-of-Thought_Reasoning_in_CVPR_2024_paper.html)

Analyzing and Improving the Training Dynamics of Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/249d932afd

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Karras_Analyzing_and_Improving_the_Training_Dynamics_of_Diffusion_Models_CVPR_2024_paper.html)

ExtraNeRF: Visibility-Aware View Extrapolation of Neural Radiance Fields with Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/25ba2dc9bb

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Shih_ExtraNeRF_Visibility-Aware_View_Extrapolation_of_Neural_Radiance_Fields_with_Diffusion_CVPR_2024_paper.html)

Grid Diffusion Models for Text-to-Video Generation

文章解读: http://www.studyai.com/xueshu/paper/detail/2747e621ef

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Lee_Grid_Diffusion_Models_for_Text-to-Video_Generation_CVPR_2024_paper.html)

Intelligent Grimm - Open-ended Visual Storytelling via Latent Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/2c27778851

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Liu_Intelligent_Grimm_-_Open-ended_Visual_Storytelling_via_Latent_Diffusion_Models_CVPR_2024_paper.html)

SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation

文章解读: http://www.studyai.com/xueshu/paper/detail/2cda20165c

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Toker_SatSynth_Augmenting_Image-Mask_Pairs_through_Diffusion_Models_for_Aerial_Semantic_CVPR_2024_paper.html)

Towards Effective Usage of Human-Centric Priors in Diffusion Models for Text-based Human Image Generation

文章解读: http://www.studyai.com/xueshu/paper/detail/2e354bbd7f

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Wang_Towards_Effective_Usage_of_Human-Centric_Priors_in_Diffusion_Models_for_CVPR_2024_paper.html)

VideoCrafter2: Overcoming Data Limitations for High-Quality Video Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/31e235fb8c

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Chen_VideoCrafter2_Overcoming_Data_Limitations_for_High-Quality_Video_Diffusion_Models_CVPR_2024_paper.html)

VMC: Video Motion Customization using Temporal Attention Adaption for Text-to-Video Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/31f7537d47

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Jeong_VMC_Video_Motion_Customization_using_Temporal_Attention_Adaption_for_Text-to-Video_CVPR_2024_paper.html)

In-distribution Public Data Synthesis with Diffusion Models for Differentially Private Image Classification

文章解读: http://www.studyai.com/xueshu/paper/detail/3477e7850f

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Park_In-distribution_Public_Data_Synthesis_with_Diffusion_Models_for_Differentially_Private_CVPR_2024_paper.html)

DragDiffusion: Harnessing Diffusion Models for Interactive Point-based Image Editing

文章解读: http://www.studyai.com/xueshu/paper/detail/351b1db34f

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Shi_DragDiffusion_Harnessing_Diffusion_Models_for_Interactive_Point-based_Image_Editing_CVPR_2024_paper.html)

Using Human Feedback to Fine-tune Diffusion Models without Any Reward Model

文章解读: http://www.studyai.com/xueshu/paper/detail/3530649522

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Yang_Using_Human_Feedback_to_Fine-tune_Diffusion_Models_without_Any_Reward_CVPR_2024_paper.html)

Text-to-Image Diffusion Models are Great Sketch-Photo Matchmakers

文章解读: http://www.studyai.com/xueshu/paper/detail/3756073ce6

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Koley_Text-to-Image_Diffusion_Models_are_Great_Sketch-Photo_Matchmakers_CVPR_2024_paper.html)

ECoDepth: Effective Conditioning of Diffusion Models for Monocular Depth Estimation

文章解读: http://www.studyai.com/xueshu/paper/detail/37a60d6279

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Patni_ECoDepth_Effective_Conditioning_of_Diffusion_Models_for_Monocular_Depth_Estimation_CVPR_2024_paper.html)

NoiseCLR: A Contrastive Learning Approach for Unsupervised Discovery of Interpretable Directions in Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/3a677b6007

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Dalva_NoiseCLR_A_Contrastive_Learning_Approach_for_Unsupervised_Discovery_of_Interpretable_CVPR_2024_paper.html)

DiffAssemble: A Unified Graph-Diffusion Model for 2D and 3D Reassembly

文章解读: http://www.studyai.com/xueshu/paper/detail/3a75633c7b

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Scarpellini_DiffAssemble_A_Unified_Graph-Diffusion_Model_for_2D_and_3D_Reassembly_CVPR_2024_paper.html)

Towards Accurate Post-training Quantization for Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/3b4e0966c5

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Wang_Towards_Accurate_Post-training_Quantization_for_Diffusion_Models_CVPR_2024_paper.html)

MatFuse: Controllable Material Generation with Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/3bfa3d05ca

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Vecchio_MatFuse_Controllable_Material_Generation_with_Diffusion_Models_CVPR_2024_paper.html)

FlowDiffuser: Advancing Optical Flow Estimation with Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/3de3d78d46

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Luo_FlowDiffuser_Advancing_Optical_Flow_Estimation_with_Diffusion_Models_CVPR_2024_paper.html)

Hierarchical Patch Diffusion Models for High-Resolution Video Generation

文章解读: http://www.studyai.com/xueshu/paper/detail/3dfb22d3bb

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Skorokhodov_Hierarchical_Patch_Diffusion_Models_for_High-Resolution_Video_Generation_CVPR_2024_paper.html)

Improving Training Efficiency of Diffusion Models via Multi-Stage Framework and Tailored Multi-Decoder Architecture

文章解读: http://www.studyai.com/xueshu/paper/detail/3ec588f171

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_Improving_Training_Efficiency_of_Diffusion_Models_via_Multi-Stage_Framework_and_CVPR_2024_paper.html)

SODA: Bottleneck Diffusion Models for Representation Learning

文章解读: http://www.studyai.com/xueshu/paper/detail/409349396f

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Hudson_SODA_Bottleneck_Diffusion_Models_for_Representation_Learning_CVPR_2024_paper.html)

Bayesian Diffusion Models for 3D Shape Reconstruction

文章解读: http://www.studyai.com/xueshu/paper/detail/414f9d9748

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Xu_Bayesian_Diffusion_Models_for_3D_Shape_Reconstruction_CVPR_2024_paper.html)

HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/427584301e

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Pang_HIR-Diff_Unsupervised_Hyperspectral_Image_Restoration_Via_Improved_Diffusion_Models_CVPR_2024_paper.html)

Learning Spatial Adaptation and Temporal Coherence in Diffusion Models for Video Super-Resolution

文章解读: http://www.studyai.com/xueshu/paper/detail/44cea49723

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Chen_Learning_Spatial_Adaptation_and_Temporal_Coherence_in_Diffusion_Models_for_CVPR_2024_paper.html)

Video Interpolation with Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/46caecfeb9

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Jain_Video_Interpolation_with_Diffusion_Models_CVPR_2024_paper.html)

Shadow Generation for Composite Image Using Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/48e2ef6c59

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Liu_Shadow_Generation_for_Composite_Image_Using_Diffusion_Model_CVPR_2024_paper.html)

Fixed Point Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/4af8ef5dcd

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Bai_Fixed_Point_Diffusion_Models_CVPR_2024_paper.html)

HOIAnimator: Generating Text-prompt Human-object Animations using Novel Perceptive Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/4de6fa7d58

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Song_HOIAnimator_Generating_Text-prompt_Human-object_Animations_using_Novel_Perceptive_Diffusion_Models_CVPR_2024_paper.html)

InteractDiffusion: Interaction Control in Text-to-Image Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/504fa6b48b

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Hoe_InteractDiffusion_Interaction_Control_in_Text-to-Image_Diffusion_Models_CVPR_2024_paper.html)

HumanNorm: Learning Normal Diffusion Model for High-quality and Realistic 3D Human Generation

文章解读: http://www.studyai.com/xueshu/paper/detail/50df5f5ae4

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Huang_HumanNorm_Learning_Normal_Diffusion_Model_for_High-quality_and_Realistic_3D_CVPR_2024_paper.html)

MACE: Mass Concept Erasure in Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/513f768c20

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Lu_MACE_Mass_Concept_Erasure_in_Diffusion_Models_CVPR_2024_paper.html)

Diffusion Handles Enabling 3D Edits for Diffusion Models by Lifting Activations to 3D

文章解读: http://www.studyai.com/xueshu/paper/detail/5248986ca6

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Pandey_Diffusion_Handles_Enabling_3D_Edits_for_Diffusion_Models_by_Lifting_CVPR_2024_paper.html)

Boosting Diffusion Models with Moving Average Sampling in Frequency Domain

文章解读: http://www.studyai.com/xueshu/paper/detail/550145e87c

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Qian_Boosting_Diffusion_Models_with_Moving_Average_Sampling_in_Frequency_Domain_CVPR_2024_paper.html)

SNED: Superposition Network Architecture Search for Efficient Video Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/596fabf345

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Li_SNED_Superposition_Network_Architecture_Search_for_Efficient_Video_Diffusion_Model_CVPR_2024_paper.html)

NoiseCollage: A Layout-Aware Text-to-Image Diffusion Model Based on Noise Cropping and Merging

文章解读: http://www.studyai.com/xueshu/paper/detail/5eec1f72ed

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Shirakawa_NoiseCollage_A_Layout-Aware_Text-to-Image_Diffusion_Model_Based_on_Noise_Cropping_CVPR_2024_paper.html)

MMA-Diffusion: MultiModal Attack on Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/6091ba9bb4

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Yang_MMA-Diffusion_MultiModal_Attack_on_Diffusion_Models_CVPR_2024_paper.html)

AAMDM: Accelerated Auto-regressive Motion Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/663ba68cd6

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Li_AAMDM_Accelerated_Auto-regressive_Motion_Diffusion_Model_CVPR_2024_paper.html)

CONFORM: Contrast is All You Need for High-Fidelity Text-to-Image Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/6694aee584

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Meral_CONFORM_Contrast_is_All_You_Need_for_High-Fidelity_Text-to-Image_Diffusion_CVPR_2024_paper.html)

DreamAvatar: Text-and-Shape Guided 3D Human Avatar Generation via Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/699a3e4cf1

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Cao_DreamAvatar_Text-and-Shape_Guided_3D_Human_Avatar_Generation_via_Diffusion_Models_CVPR_2024_paper.html)

Prompting Hard or Hardly Prompting: Prompt Inversion for Text-to-Image Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/6b48131d56

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Mahajan_Prompting_Hard_or_Hardly_Prompting_Prompt_Inversion_for_Text-to-Image_Diffusion_CVPR_2024_paper.html)

FreeControl: Training-Free Spatial Control of Any Text-to-Image Diffusion Model with Any Condition

文章解读: http://www.studyai.com/xueshu/paper/detail/6bbafe932b

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Mo_FreeControl_Training-Free_Spatial_Control_of_Any_Text-to-Image_Diffusion_Model_with_CVPR_2024_paper.html)

MimicDiffusion: Purifying Adversarial Perturbation via Mimicking Clean Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/6d73be43cf

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Song_MimicDiffusion_Purifying_Adversarial_Perturbation_via_Mimicking_Clean_Diffusion_Model_CVPR_2024_paper.html)

Towards Memorization-Free Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/6e1c65c4a3

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Chen_Towards_Memorization-Free_Diffusion_Models_CVPR_2024_paper.html)

Style Injection in Diffusion: A Training-free Approach for Adapting Large-scale Diffusion Models for Style Transfer

文章解读: http://www.studyai.com/xueshu/paper/detail/6ebe358047

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Chung_Style_Injection_in_Diffusion_A_Training-free_Approach_for_Adapting_Large-scale_CVPR_2024_paper.html)

CCEdit: Creative and Controllable Video Editing via Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/727d701991

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Feng_CCEdit_Creative_and_Controllable_Video_Editing_via_Diffusion_Models_CVPR_2024_paper.html)

D^4: Dataset Distillation via Disentangled Diffusion Model

文章解读: http://www.studyai.com/xueshu/paper/detail/7324e3c1ce

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Su_D4_Dataset_Distillation_via_Disentangled_Diffusion_Model_CVPR_2024_paper.html)

Cache Me if You Can: Accelerating Diffusion Models through Block Caching

文章解读: http://www.studyai.com/xueshu/paper/detail/742e8bfc85

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Wimbauer_Cache_Me_if_You_Can_Accelerating_Diffusion_Models_through_Block_CVPR_2024_paper.html)

Paint3D: Paint Anything 3D with Lighting-Less Texture Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/74c35b5317

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zeng_Paint3D_Paint_Anything_3D_with_Lighting-Less_Texture_Diffusion_Models_CVPR_2024_paper.html)

DiffLoc: Diffusion Model for Outdoor LiDAR Localization

文章解读: http://www.studyai.com/xueshu/paper/detail/74ea377038

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Li_DiffLoc_Diffusion_Model_for_Outdoor_LiDAR_Localization_CVPR_2024_paper.html)

Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/7680411f5b

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Guo_Smooth_Diffusion_Crafting_Smooth_Latent_Spaces_in_Diffusion_Models_CVPR_2024_paper.html)

Your Student is Better Than Expected: Adaptive Teacher-Student Collaboration for Text-Conditional Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/7697ca3ab2

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Starodubcev_Your_Student_is_Better_Than_Expected_Adaptive_Teacher-Student_Collaboration_for_CVPR_2024_paper.html)

DistriFusion: Distributed Parallel Inference for High-Resolution Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/7826ac271a

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Li_DistriFusion_Distributed_Parallel_Inference_for_High-Resolution_Diffusion_Models_CVPR_2024_paper.html)

ExtDM: Distribution Extrapolation Diffusion Model for Video Prediction

文章解读: http://www.studyai.com/xueshu/paper/detail/78b1b6bbda

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Zhang_ExtDM_Distribution_Extrapolation_Diffusion_Model_for_Video_Prediction_CVPR_2024_paper.html)

WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/7aeca5ccc0

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Kim_WOUAF_Weight_Modulation_for_User_Attribution_and_Fingerprinting_in_Text-to-Image_CVPR_2024_paper.html)

EmoGen: Emotional Image Content Generation with Text-to-Image Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/7bf18a7915

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Yang_EmoGen_Emotional_Image_Content_Generation_with_Text-to-Image_Diffusion_Models_CVPR_2024_paper.html)

RichDreamer: A Generalizable Normal-Depth Diffusion Model for Detail Richness in Text-to-3D

文章解读: http://www.studyai.com/xueshu/paper/detail/808e23c692

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Qiu_RichDreamer_A_Generalizable_Normal-Depth_Diffusion_Model_for_Detail_Richness_in_CVPR_2024_paper.html)

HHMR: Holistic Hand Mesh Recovery by Enhancing the Multimodal Controllability of Graph Diffusion Models

文章解读: http://www.studyai.com/xueshu/paper/detail/81e0b4cf31

文章链接: (https://openaccess.thecvf.com/content/CVPR2024/html/Li_HHMR_Holistic_Hand_Mesh_Recovery_by_Enhancing_the_Multimodal_Controllability_CVPR_2024_paper.html)

### CVPR 2024 扩散模型论文解读 CVPR计算机视觉和模式识别会议)作为顶级学术会议之一,在2024年的议程中涵盖了众多前沿研究领域,其中包括扩散模型的研究进展[^1]。扩散模型作为一种强大的生成模型框架,近年来受到了广泛关注。 #### 扩散模型概述 扩散模型通过逐步向数据添加噪声来学习其分布特性,并反过来利用这一过程生成新的样本。该方法最初受到非平衡热力学中的扩散方程启发而得名。在图像生成任务上表现出色的同时,也逐渐扩展到其他模态的数据处理当中。 #### 论文亮点分析 针对CVPR 2024所收录的相关工作,部分研究表明如何改进现有架构以提高效率并减少计算成本;另一些则探索了不同应用场景下扩散模型的应用潜力,比如医学影像重建、视频预测等领域内的创新应用案例。 ```python import torch.nn as nn class DiffusionModel(nn.Module): def __init__(self, input_size, hidden_layers): super(DiffusionModel, self).__init__() self.layers = nn.Sequential( nn.Linear(input_size, hidden_layers), nn.ReLU(), # 更多层... ) def forward(self, x): return self.layers(x) ``` #### 实验结果与讨论 实验结果显示,经过优化后的算法能够在保持高质量输出的前提下显著降低训练时间及资源消耗。此外,对于特定行业需求定制化的解决方案也被提出,进一步证明了此类技术的强大适应性和广阔前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值