CVPR-2024 扩散模型(Diffusion Model)相关论文 PART1(83篇)
Alchemist: Parametric Control of Material Properties with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/00af847b59
CGI-DM: Digital Copyright Authentication for Diffusion Models via Contrasting Gradient Inversion
文章解读: http://www.studyai.com/xueshu/paper/detail/02650e0007
DiffusionMTL: Learning Multi-Task Denoising Diffusion Model from Partially Annotated Data
文章解读: http://www.studyai.com/xueshu/paper/detail/02db6a9f39
InstructVideo: Instructing Video Diffusion Models with Human Feedback
文章解读: http://www.studyai.com/xueshu/paper/detail/043708c70a
Training Diffusion Models Towards Diverse Image Generation with Reinforcement Learning
文章解读: http://www.studyai.com/xueshu/paper/detail/04834c9c62
BIVDiff: A Training-Free Framework for General-Purpose Video Synthesis via Bridging Image and Video Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/0837af0cbe
SVGDreamer: Text Guided SVG Generation with Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/08b09904ac
Layout-Agnostic Scene Text Image Synthesis with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/0a49a8f854
Building Bridges across Spatial and Temporal Resolutions: Reference-Based Super-Resolution via Change Priors and Conditional Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/0d40aa4b71
TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/0da6627c2b
360DVD: Controllable Panorama Video Generation with 360-Degree Video Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/0f48413a14
Inversion-Free Image Editing with Language-Guided Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/0f5ea8782c
Towards More Accurate Diffusion Model Acceleration with A Timestep Tuner
文章解读: http://www.studyai.com/xueshu/paper/detail/100739f53d
StableVITON: Learning Semantic Correspondence with Latent Diffusion Model for Virtual Try-On
文章解读: http://www.studyai.com/xueshu/paper/detail/102ef503be
Prompt-Free Diffusion: Taking “Text” out of Text-to-Image Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/131cf98157
CrowdDiff: Multi-hypothesis Crowd Density Estimation using Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/13cfcf43c9
Image Neural Field Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/13d6d11f82
DiffSCI: Zero-Shot Snapshot Compressive Imaging via Iterative Spectral Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/15b04c6214
Bidirectional Autoregessive Diffusion Model for Dance Generation
文章解读: http://www.studyai.com/xueshu/paper/detail/171276f3e0
Neural Sign Actors: A Diffusion Model for 3D Sign Language Production from Text
文章解读: http://www.studyai.com/xueshu/paper/detail/183499c993
DiffuseMix: Label-Preserving Data Augmentation with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/18ca8bde75
SimAC: A Simple Anti-Customization Method for Protecting Face Privacy against Text-to-Image Synthesis of Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/18ea2aefa5
Point Cloud Pre-training with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/1f5c5b6783
Rethinking Diffusion Model for Multi-Contrast MRI Super-Resolution
文章解读: http://www.studyai.com/xueshu/paper/detail/1fd6ad35fb
Residual Denoising Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/22782f49db
Generate Subgoal Images before Act: Unlocking the Chain-of-Thought Reasoning in Diffusion Model for Robot Manipulation with Multimodal Prompts
文章解读: http://www.studyai.com/xueshu/paper/detail/23f9828fd7
Analyzing and Improving the Training Dynamics of Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/249d932afd
ExtraNeRF: Visibility-Aware View Extrapolation of Neural Radiance Fields with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/25ba2dc9bb
Grid Diffusion Models for Text-to-Video Generation
文章解读: http://www.studyai.com/xueshu/paper/detail/2747e621ef
Intelligent Grimm - Open-ended Visual Storytelling via Latent Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/2c27778851
SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation
文章解读: http://www.studyai.com/xueshu/paper/detail/2cda20165c
Towards Effective Usage of Human-Centric Priors in Diffusion Models for Text-based Human Image Generation
文章解读: http://www.studyai.com/xueshu/paper/detail/2e354bbd7f
VideoCrafter2: Overcoming Data Limitations for High-Quality Video Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/31e235fb8c
VMC: Video Motion Customization using Temporal Attention Adaption for Text-to-Video Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/31f7537d47
In-distribution Public Data Synthesis with Diffusion Models for Differentially Private Image Classification
文章解读: http://www.studyai.com/xueshu/paper/detail/3477e7850f
DragDiffusion: Harnessing Diffusion Models for Interactive Point-based Image Editing
文章解读: http://www.studyai.com/xueshu/paper/detail/351b1db34f
Using Human Feedback to Fine-tune Diffusion Models without Any Reward Model
文章解读: http://www.studyai.com/xueshu/paper/detail/3530649522
Text-to-Image Diffusion Models are Great Sketch-Photo Matchmakers
文章解读: http://www.studyai.com/xueshu/paper/detail/3756073ce6
ECoDepth: Effective Conditioning of Diffusion Models for Monocular Depth Estimation
文章解读: http://www.studyai.com/xueshu/paper/detail/37a60d6279
NoiseCLR: A Contrastive Learning Approach for Unsupervised Discovery of Interpretable Directions in Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/3a677b6007
DiffAssemble: A Unified Graph-Diffusion Model for 2D and 3D Reassembly
文章解读: http://www.studyai.com/xueshu/paper/detail/3a75633c7b
Towards Accurate Post-training Quantization for Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/3b4e0966c5
MatFuse: Controllable Material Generation with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/3bfa3d05ca
FlowDiffuser: Advancing Optical Flow Estimation with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/3de3d78d46
Hierarchical Patch Diffusion Models for High-Resolution Video Generation
文章解读: http://www.studyai.com/xueshu/paper/detail/3dfb22d3bb
Improving Training Efficiency of Diffusion Models via Multi-Stage Framework and Tailored Multi-Decoder Architecture
文章解读: http://www.studyai.com/xueshu/paper/detail/3ec588f171
SODA: Bottleneck Diffusion Models for Representation Learning
文章解读: http://www.studyai.com/xueshu/paper/detail/409349396f
Bayesian Diffusion Models for 3D Shape Reconstruction
文章解读: http://www.studyai.com/xueshu/paper/detail/414f9d9748
HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/427584301e
Learning Spatial Adaptation and Temporal Coherence in Diffusion Models for Video Super-Resolution
文章解读: http://www.studyai.com/xueshu/paper/detail/44cea49723
Video Interpolation with Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/46caecfeb9
Shadow Generation for Composite Image Using Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/48e2ef6c59
Fixed Point Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/4af8ef5dcd
HOIAnimator: Generating Text-prompt Human-object Animations using Novel Perceptive Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/4de6fa7d58
InteractDiffusion: Interaction Control in Text-to-Image Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/504fa6b48b
HumanNorm: Learning Normal Diffusion Model for High-quality and Realistic 3D Human Generation
文章解读: http://www.studyai.com/xueshu/paper/detail/50df5f5ae4
MACE: Mass Concept Erasure in Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/513f768c20
Diffusion Handles Enabling 3D Edits for Diffusion Models by Lifting Activations to 3D
文章解读: http://www.studyai.com/xueshu/paper/detail/5248986ca6
Boosting Diffusion Models with Moving Average Sampling in Frequency Domain
文章解读: http://www.studyai.com/xueshu/paper/detail/550145e87c
SNED: Superposition Network Architecture Search for Efficient Video Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/596fabf345
NoiseCollage: A Layout-Aware Text-to-Image Diffusion Model Based on Noise Cropping and Merging
文章解读: http://www.studyai.com/xueshu/paper/detail/5eec1f72ed
MMA-Diffusion: MultiModal Attack on Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/6091ba9bb4
AAMDM: Accelerated Auto-regressive Motion Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/663ba68cd6
CONFORM: Contrast is All You Need for High-Fidelity Text-to-Image Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/6694aee584
DreamAvatar: Text-and-Shape Guided 3D Human Avatar Generation via Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/699a3e4cf1
Prompting Hard or Hardly Prompting: Prompt Inversion for Text-to-Image Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/6b48131d56
FreeControl: Training-Free Spatial Control of Any Text-to-Image Diffusion Model with Any Condition
文章解读: http://www.studyai.com/xueshu/paper/detail/6bbafe932b
MimicDiffusion: Purifying Adversarial Perturbation via Mimicking Clean Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/6d73be43cf
Towards Memorization-Free Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/6e1c65c4a3
Style Injection in Diffusion: A Training-free Approach for Adapting Large-scale Diffusion Models for Style Transfer
文章解读: http://www.studyai.com/xueshu/paper/detail/6ebe358047
CCEdit: Creative and Controllable Video Editing via Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/727d701991
D^4: Dataset Distillation via Disentangled Diffusion Model
文章解读: http://www.studyai.com/xueshu/paper/detail/7324e3c1ce
Cache Me if You Can: Accelerating Diffusion Models through Block Caching
文章解读: http://www.studyai.com/xueshu/paper/detail/742e8bfc85
Paint3D: Paint Anything 3D with Lighting-Less Texture Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/74c35b5317
DiffLoc: Diffusion Model for Outdoor LiDAR Localization
文章解读: http://www.studyai.com/xueshu/paper/detail/74ea377038
Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/7680411f5b
Your Student is Better Than Expected: Adaptive Teacher-Student Collaboration for Text-Conditional Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/7697ca3ab2
DistriFusion: Distributed Parallel Inference for High-Resolution Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/7826ac271a
ExtDM: Distribution Extrapolation Diffusion Model for Video Prediction
文章解读: http://www.studyai.com/xueshu/paper/detail/78b1b6bbda
WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/7aeca5ccc0
EmoGen: Emotional Image Content Generation with Text-to-Image Diffusion Models
文章解读: http://www.studyai.com/xueshu/paper/detail/7bf18a7915
RichDreamer: A Generalizable Normal-Depth Diffusion Model for Detail Richness in Text-to-3D
文章解读: http://www.studyai.com/xueshu/paper/detail/808e23c692