### 关于无人机投放器主程序设计方案
在设计无人机投放器主程序时,可以借鉴多智能体强化学习方法中的独立DQN与DRQN结合策略[^1]。这种技术框架不仅适用于子带分配问题,也可以扩展到其他复杂的任务场景,比如垃圾投放管理系统的智能化操作[^3]。
以下是针对无人机投放器主程序的一个简化代码示例,该示例展示了如何通过状态感知、动作选择以及奖励机制来完成特定的任务目标:
#### 主程序逻辑结构
```python
import torch
import torch.nn as nn
import numpy as np
class DQNAgent(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=64):
super(DQNAgent, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, action_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
return self.fc3(x)
def select_action(agent, state, epsilon):
if np.random.rand() < epsilon:
return np.random.choice(action_space_size)
with torch.no_grad():
q_values = agent(torch.tensor(state).float())
return torch.argmax(q_values).item()
def train_agent(agent, optimizer, memory_buffer, batch_size, gamma):
if len(memory_buffer) < batch_size:
return
transitions = memory_buffer.sample(batch_size)
states, actions, rewards, next_states, dones = zip(*transitions)
states_tensor = torch.tensor(states, dtype=torch.float)
actions_tensor = torch.tensor(actions, dtype=torch.int64).unsqueeze(-1)
rewards_tensor = torch.tensor(rewards, dtype=torch.float).unsqueeze(-1)
next_states_tensor = torch.tensor(next_states, dtype=torch.float)
dones_tensor = torch.tensor(dones, dtype=torch.bool).unsqueeze(-1)
current_q_values = agent(states_tensor).gather(1, actions_tensor)
next_q_values = agent(next_states_tensor).max(dim=1)[0].detach().unsqueeze(-1)
target_q_values = rewards_tensor + (gamma * next_q_values * (~dones_tensor))
loss = nn.MSELoss()(current_q_values, target_q_values)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 初始化参数
state_dim = 8 # 假设状态维度为8(例如位置坐标、速度等)
action_dim = 4 # 动作空间大小(例如上升、下降、左转、右转)
hidden_dim = 64
epsilon = 0.9
gamma = 0.99
learning_rate = 0.001
batch_size = 32
agent = DQNAgent(state_dim, action_dim, hidden_dim)
optimizer = torch.optim.Adam(agent.parameters(), lr=learning_rate)
# 训练循环模拟
for episode in range(num_episodes):
state = env.reset()
total_reward = 0
while True:
action = select_action(agent, state, epsilon)
next_state, reward, done, _ = env.step(action)
memory_buffer.push(state, action, reward, next_state, done)
train_agent(agent, optimizer, memory_buffer, batch_size, gamma)
state = next_state
total_reward += reward
if done:
break
```
此代码片段展示了一个基础的DQN算法实现过程,其中`select_action`函数用于根据当前状态决定采取的动作;而`train_agent`则负责更新神经网络权重以优化性能表现。
对于实际应用而言,在开发过程中还需要考虑硬件选型方面的要求,例如高效动力系统支持长时间续航能力以及轻量级机身设计提升整体机动性和稳定性等问题[^2]。