Longest Ordered Subsequence (dp)

本文介绍了一种寻找给定序列中最长递增子序列的算法实现,通过动态规划的方法逐步构建解决方案,并提供了详细的代码解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence ( a1, a2, ..., aN) be any sequence ( ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7
1 7 3 5 9 4 8
Sample Output
4

题意就是找最长递增子序列;

 1735948
11211111
21221111
31223111
41223411
51223431
61223434

在看看代码,最好代码和图一起看:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
int dp[1005];          //记录当前位置往前最多有几个递减的数(包括当前位置的数);
int a[1005];           //储存原序列;
int main(){
    int N;
    scanf("%d",&N);
    for(int i=1; i<=N; i++){
        scanf("%d",&a[i]);
        dp[i]=1;                //初始化均为1;
    }
    for(int i=2; i<=N; i++){    //从第二个数开始找;
        int temp=0;             //记录递减的数的个数;
        for(int j=1; j<i; j++)  //从第1个一直找到第i个;
            if(a[i]>a[j])       //if 找的一个较小的数就a[i]前边的递减的数的个数就改为a[j]前面的递减数的个数(记录最大的);
                temp=max(temp, dp[j]);   //例如: i=6;a[4]前递减数为2个,a[5]为3个,则temp=3;
        dp[i]=temp+1;           //加上本身的1;
    }
    int maxx=0;
    for(int i=1; i<=N; i++)     //找最大的;
        maxx=max(maxx, dp[i]);
    printf("%d\n", maxx);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值