Python直方图:从核密度估计到高维空间解析

一、直方图的核心原理与数学本质

数据分布的视觉解码器

直方图(Histogram)是数据科学家的"分布显微镜",通过将连续数据划分为等宽区间(Bin),统计各区间的频数/频率,用相邻矩形条直观展示数据分布形态。其核心三要素:

  1. 区间划分:决定数据粒度的核心参数
  2. 统计方式:频数统计 vs 概率密度
  3. 归一化:数据标准化处理技巧

数学建模解析

直方图的矩形高度由以下公式决定:

h i = 频数 i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赛卡

逐梦而行即辉煌

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值