ICLR 2025 | 时间序列(Time Series)高分论文汇总

ICLR2025已经结束了讨论阶段,进入了meta-review阶段,分数应该不会有太大的变化了,本文总结了其中时间序列(Time Series)高分的论文。如有疏漏,欢迎大家补充。

挑选原则:均分要大于等于6(即使有3,但是有8或者更高的分拉回来也算)

TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis

链接https://openreview.net/forum?id=1CLzLXSFNn

分数:6810

关键词:多任务(预测,分类,插补,异常检测),基础模型

keywords: time series, pattern machine, predictive analysis

TL; DR :TimeMixer++ is a time series pattern machine that employs multi-scale and multi-resolution pattern extraction to deliver SOTA performance across 8 diverse analytical tasks, including forecasting, classification, anomaly detection, and imputation.

2 Root Cause Analysis of Anomalies in Multivariate Time Series through Granger Causal Discovery

链接https://openreview.net/forum?id=k38Th3x4d9

分数:88888

关键词:因果发现

keywords:root cause analysis, Granger causality, multivariate time series

AERCA

3 Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series

链接https://openreview.net/forum?id=8zJRon6k5v

分数:8888

关键词:变分推断,不规则时间序列,状态空间模型

keywords:stochastic optimal control, variational inference, state space model, irregular time series

TL; DR:We propose a multi-marginal Doob's $h$-transform for irregular time series and variational inference with stochastic optimal control to approximate it.

4 Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts

链接https://openreview.net/forum?id=e1wDDFmlVu

分数:688

关键词:预测,基础模型,混合专家系统

keywords:time series, foundation model, forecasting

Time-MoE

Label Correlation Biases Direct Time Series Forecast

链接https://openreview.net/forum?id=4A9IdSa1ul

分数:8686

关键词:长时预测,频域

keywords:Time series, Long-term Forecast

TL; DR:Learning to forecast in the frequency domain significantly enhances forecasting performance.

6 Fast and Slow Streams for Online Time Series Forecasting Without Information Leakage

链接https://openreview.net/forum?id=I0n3EyogMi

分数:6688

关键词:在线预测,流式数据,概念飘逸

keywords:online time series forecasting, concept drift, online learning

TL; DR: Redefined the setting of online time series forecasting to prevent information leakage and proposed a model-agnostic framework for this setting.

Shifting the Paradigm: A Diffeomorphism Between Time Series Data Manifolds for Achieving Shift-Invariancy in Deep Learning

链接https://openreview.net/forum?id=nibeaHUEJx

分数:6688

关键词:频域,平移不变性

keywords:Time series analysis, invariance in neural networks

Optimal Transport for Time Series Imputation

链接https://openreview.net/forum?id=xPTzjpIQNp

分数:588

关键词:插补,最优传输

keywords: Time series, Imputation

Constrained Posterior Sampling: Time Series Generation with Hard Constraints

链接https://openreview.net/forum?id=pKMpmbuKnd

分数:5688

关键词:时间序列生成,扩散模型

keywords:Time Series Generation, Posterior Sampling, Diffusion Models, Controlled Generation

10 A Simple Baseline for Multivariate Time Series Forecasting

链接https://openreview.net/forum?id=oANkBaVci5

分数:5688

关键词:预测,小波变换

keywords:Time Series Forecasting, Wavelets

11 Shedding Light on Time Series Classification using Interpretability Gated Networks

链接https://openreview.net/forum?id=n34taxF0TC

分数:56688

关键词:可解释性,Shapelet(特征提取)

keywords:Interpretability, Time-series, Shapelet

TL; DR: A framework to integrate interpretable models with deep neural networks for interpretable time-series classification.

12 Multi-Resolution Decomposable Diffusion Model for Non-Stationary Time Series Anomaly Detection

链接https://openreview.net/forum?id=eWocmTQn7H

分数:6668

关键词:异常检测,多分辨率,扩散模型

keywords:Diffusion Model, Non-Stationary Time Series, Anomaly Detection, Multi-Resolution

TL; DR:This paper delves into the potential of multi-resolution technique and diffusion model for non-stationary time series anomaly detection, supported by rigorous mathematical proofs.

13 CATCH: Channel-Aware Multivariate Time Series Anomaly Detection via Frequency Patching

链接https://openreview.net/forum?id=m08aK3xxdJ

分数:5668

关键词:异常检测,频域

keywords: Multivariate Time Series, Anomaly Detection

CATCH

14 CoMRes: Semi-Supervised Time Series Forecasting Utilizing Consensus Promotion of Multi-Resolution

链接https://openreview.net/forum?id=bRa4JLPzii

分数:5668

关键词:多尺度,半监督

keywords:Time series forecasting, Multi-scale, Semi-supervised learning

TL; DR:we propose a novel semi-supervised time series forecasting utilzing con

15 Towards Neural Scaling Laws for Time Series Foundation Models

链接https://openreview.net/forum?id=uCqxDfLYrB

分数:5668

keywords:Time series, scaling law, foundation model, transformer, forecasting

16 Quantifying Past Error Matters: Conformal Inference for Time Series

链接https://openreview.net/forum?id=RD9q5vEe1Q

分数:5668

关键词:不确定性量化,分布偏移

keywords:Time Series; Uncertainty Quantification; Conformal Prediction; Distribution Shift

17 TVNet: A Novel Time Series Analysis Method Based on Dynamic Convolution and 3D-Variation

链接https://openreview.net/forum?id=MZDdTzN6Cy

分数:5668

关键词:卷积

keywords:Time series Analysis, Dynamic convolution, Deep Learning

TL; DR:New time series modeling perspective based 3D-variation and new analysis framework based dynamic convolution

18 In-context Time Series Predictor

链接https://openreview.net/forum?id=dCcY2pyNIO

分数:3668

关键词:预测,上下文学习

keywords:Time Series Forecasting, In-context Learning, Transformer

19 Compositional simulation-based inference for time series

链接https://openreview.net/forum?id=uClUUJk05H

分数:566668

关键词:贝叶斯推断

keywords:Simulation-based inference, Bayesian inference, time series, markovian simulators, Amortized Bayesian inference

FNSE

20 Towards a General Time Series Anomaly Detector with Adaptive Bottlenecks and Dual Adversarial Decoders

链接https://openreview.net/forum?id=aKcd7ImG5e

分数:6666

关键词:异常检测

keywords:Time series, Anomaly detection

TL; DR:We propose a general time series anomaly detection model that is pre-trained on multi-domain datasets and can subsequently apply to many downstream scenarios

21 TimeKAN: KAN-based Frequency Decomposition Learning Architecture for Long-term Time Series Forecasting

链接https://openreview.net/forum?id=wTLc79YNbh

分数:3588

关键词:预测,KAN

keywords:kolmogorov-Arnold Network; Time Series Forecasting

TimeKAN

22 Investigating Pattern Neurons in Urban Time Series Forecasting

链接https://openreview.net/forum?id=a9vey6B54y

分数:6666

关键词:时空预测(更像是),城市时间序列预测模型

keywords:urban time series forecasting, neuron detection

PN-Train

23 Locally Connected Echo State Networks for Time Series Forecasting

链接https://openreview.net/forum?id=KeRwLLwZaw

分数:6666

关键词:回声状态网络

keywords:Time Series Analysis, Time Series Forecasting, Recurrent Networks, Regression, Echo State Networks

TL; DR: Improved locally connected ESN method comparable with state-of-the-art on real-world time series datasets.

24 Diffusion-based Decoupled Deterministic and Uncertain Framework for Probabilistic Multivariate Time Series Forecasting

链接https://openreview.net/forum?id=HdUkF1Qk7g

分数:6666

关键词:长时预测,扩散模型

keywords:long-term time series forecasting, deep learning, diffusion model

D^3U

25 TS-LIF: A Temporal Segment Spiking Neuron Network for Time Series Forecasting

链接https://openreview.net/forum?id=rDe9yQQYKt

分数:666

关键词:脉冲神经网络

keywords:spiking neural network, time series forecasting, Application

TL; DR:We proposed a Temporal Segment Spiking Neuron Network (TS-LIF) for multivariate time series forecasting, supported by stability analysis and frequency response analysis to demonstrate its effectiveness and efficiency.

26 Exploring Representations and Interventions in Time Series Foundation Models

链接https://openreview.net/forum?id=IRL9wUiwab

分数:6666

keywords:Time Series Foundation Models, Model Steering, Interpretability, Pruning

TL; DR:We investigate why time series foundation models work, the kinds of concepts that these models learn, and how can these concepts be manipulated to influence their outputs?

27 FLDmamba: Integrating Fourier and Laplace Transform Decomposition with Mamba for Enhanced Time Series Prediction

链接https://openreview.net/forum?id=9EiWIyJMNi

分数:556668

关键词:Mamba,FFT

keywords:Mamba; Time Series Prediction

FLDmamba

28 KooNPro: A Variance-Aware Koopman Probabilistic Model Enhanced by Neural Processes for Time Series Forecasting

链接https://openreview.net/forum?id=5oSUgTzs8Y

分数:66666

keywords:Probabilistic time series prediction; Neural Process; Deep Koopman model

29 Context-Alignment: Activating and Enhancing LLMs Capabilities in Time Series

链接https://openreview.net/forum?id=syC2764fPc

分数:6666

keywords:Time Series, Large Language Models, Context-Alignment

TL; DR:LLMs for time series tasks

30 TwinsFormer: Revisiting Inherent Dependencies via Two Interactive Components for Time Series Forecasting

链接https://openreview.net/forum?id=BSsyY29bcl

分数:55568

keywords:Inherent Dependencies, Interactive Components, Time Series Forecasting

TL; DR:A novel Transformer-and decomposition-based framework using residual and interactive learning for time series forecasting.

31 DyCAST: Learning Dynamic Causal Structure from Time Series

链接https://openreview.net/forum?id=WjDjem8mWE

分数:3668

关键词

TL; DR:dynamic causal discovery; time series

32 Drift2Matrix: Kernel-Induced Self Representation for Concept Drift Adaptation in Co-evolving Time Series

链接https://openreview.net/forum?id=prSJlvWrgE

分数:3866

TL; DR:co-evolving time series, concept drift, kernel representation learning

 时间序列领域做毕设!论文方向没灵感没创新点?Informer+Timesnet代码复现,80篇+前沿论文,110篇顶会顶刊原文/演示应有尽有!来领一份。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值