[NeetCode 150] Three Integer Sum

Three Integer Sum

Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] where nums[i] + nums[j] + nums[k] == 0, and the indices i, j and k are all distinct.

The output should not contain any duplicate triplets. You may return the output and the triplets in any order.

Example 1:

Input: nums = [-1,0,1,2,-1,-4]

Output: [[-1,-1,2],[-1,0,1]]

Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].

Example 2:

Input: nums = [0,1,1]

Output: []

Explanation: The only possible triplet does not sum up to 0.

Example 3:

Input: nums = [0,0,0]

Output: [[0,0,0]]

Explanation: The only possible triplet sums up to 0.

Constraints:

3 <= nums.length <= 1000
-10^5 <= nums[i] <= 10^5

Solution

The most easy-to-understand way I think is two-pointers algorithm. First, we sort the list of numbers in ascending order. Then, we traverse the list, taking current number as the first number in tuple, we can do two-pointers on the subarray on its right, where the left pointer begins from the number just after current number and the right pointer begins from the last number. For each number we have traversed, it takes O(n)O(n)O(n) to finish the two pointers and find potential combinations, so the overall time complexity is O(n2)O(n^2)O(n2).

Code

class Solution:
    def threeSum(self, nums: List[int]) -> List[List[int]]:
        ans = []
        nums.sort()
        for i in range(len(nums)):
            if nums[i] > 0:
                break
            if i > 0 and nums[i] == nums[i-1]:
                continue
            j = i+1
            k = len(nums)-1
            while j < k:
                if nums[j] + nums[k] > -nums[i]:
                    k -= 1
                elif nums[j] + nums[k] < -nums[i]:
                    j += 1
                else:
                    ans.append([nums[i], nums[j], nums[k]])
                    j += 1
                    while nums[j] == nums[j-1] and j < k:
                        j += 1
        return ans
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值