[NeetCode 150] Longest Common Subsequence

Longest Common Subsequence

Given two strings text1 and text2, return the length of the longest common subsequence between the two strings if one exists, otherwise return 0.

A subsequence is a sequence that can be derived from the given sequence by deleting some or no elements without changing the relative order of the remaining characters.

For example, “cat” is a subsequence of “crabt”.
A common subsequence of two strings is a subsequence that exists in both strings.

Example 1:

Input: text1 = "cat", text2 = "crabt" 

Output: 3 

Explanation: The longest common subsequence is “cat” which has a length of 3.

Example 2:

Input: text1 = "abcd", text2 = "abcd"

Output: 4

Example 3:

Input: text1 = "abcd", text2 = "efgh"

Output: 0

Constraints:

1 <= text1.length, text2.length <= 1000

text1 and text2 consist of only lowercase English characters.

Solution

Let dp[i][j]dp[i][j]dp[i][j] represents the length of longest common subsequence between text10:itext1_{0:i}text10:i and text20:jtext2_{0:j}text20:j. If text1[i]==text2[j]text1[i]==text2[j]text1[i]==text2[j], then we can transfer from dp[i−1][j−1]dp[i-1][j-1]dp[i1][j1] that dp[i][j]=dp[i−1][j−1]+1dp[i][j] = dp[i-1][j-1]+1dp[i][j]=dp[i1][j1]+1. Or dp[i][j]dp[i][j]dp[i][j] will be max⁡(dp[i−1][j],dp[i][j−1]])\max(dp[i-1][j], dp[i][j-1]])max(dp[i1][j],dp[i][j1]]), because text1[i]text1[i]text1[i] and text2[j]text2[j]text2[j] do not make any contribution to the common subsequence.

Code

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        dp = [[0]*len(text2) for _ in range(len(text1))]
        for j in range(len(text2)):
            dp[0][j] = 1 if text1[0] == text2[j] else 0
        for j in range(1, len(text2)):
            dp[0][j] = max(dp[0][j], dp[0][j-1])
        for i in range(1, len(text1)):
            dp[i][0] = 1 if text1[i] == text2[0] else 0
            dp[i][0] = max(dp[i][0], dp[i-1][0])
            for j in range(1, len(text2)):
                if text1[i] == text2[j]:
                    dp[i][j] = dp[i-1][j-1]+1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
        print(dp)
        return dp[-1][-1]
        
### 回答1: 最长公共子序列(Longest Common Subsequence)指的是在两个序列中找到最长的公共子序列,这个公共子序列可以不连续,但是需要保持相对顺序不变。例如,对于序列ABCD和ACDFG,它们的最长公共子序列是ACD。 ### 回答2: 最长公共子序列(Longest Common Subsequence,简称LCS)是指在给定多个序列中,找到最长的一个子序列,该子序列同时出现在这些序列中,并且其他元素的相对顺序保持一致。 举个例子,假设有两个序列A和B,A为[1, 2, 3, 4, 5],B为[2, 4, 5, 6]。它们的一个最长公共子序列是[2, 4, 5],该子序列同时存在于A和B中。 求解LCS的问题可以用动态规划的方法来解决。我们可以构建一个二维数组dp,其中dp[i][j]表示序列A的前i个元素和序列B的前j个元素的LCS长度。那么dp[i][j]可以通过以下方式得到: 1. 如果A[i]等于B[j],则dp[i][j]等于dp[i-1][j-1] + 1; 2. 如果A[i]不等于B[j],则dp[i][j]等于max(dp[i-1][j], dp[i][j-1])。 通过填充整个dp数组,最终可以得到序列A和序列B的LCS长度。要找到具体的LCS序列,则可以通过反向遍历dp数组进行构建。 LCS问题在字符串处理、DNA序列匹配、版本控制等领域都有广泛的应用。其时间复杂度为O(m*n),其中m和n分别为序列A和序列B的长度。 ### 回答3: 最长公共子序列(Longest Common Subsequence)是一个经典的计算机科学问题。给定两个序列S和T,我们要找出它们之间最长的公共子序列。 子序列是从给定序列中按顺序选择几个元素而组成的序列。而公共子序列指的是同时是序列S和T的子序列的序列。 为了解决这个问题,可以使用动态规划的方法。我们可以定义一个二维数组dp,其中dp[i][j]表示序列S的前i个元素和序列T的前j个元素之间的最长公共子序列的长度。 接下来,我们可以使用以下递推关系来填充dp数组: 如果S[i]等于T[j],则dp[i][j] = dp[i-1][j-1] + 1; 如果S[i]不等于T[j],则dp[i][j] = max(dp[i-1][j], dp[i][j-1])。 最后,我们可以通过查看dp[S.length()][T.length()]来得到最长公共子序列的长度。 此外,我们也可以用回溯法来还原最长公共子序列本身。我们可以从dp[S.length()][T.length()]开始,如果S[i]等于T[j],则将S[i]添加到结果序列中,并向左上方移动,即i = i-1,j = j-1。如果S[i]不等于T[j],则根据dp数组的值选择向上(i = i-1)或向左(j = j-1)移动。 总之,最长公共子序列问题是一个经典的计算机科学问题,可以使用动态规划的方法解决。我们可以通过构建二维dp数组来计算最长公共子序列的长度,并可以使用回溯法来还原它本身。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShadyPi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值