【CODEFORCES】 C. Riding in a Lift

C. Riding in a Lift
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let's number the floors from bottom to top with integers from 1 to n. Now you're on the floor number a. You are very bored, so you want to take the lift. Floor numberb has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.

Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y ≠ x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen y must be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|. After the lift successfully transports you to floor y, you write down number y in your notepad.

Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).

Input

The first line of the input contains four space-separated integers nabk (2 ≤ n ≤ 50001 ≤ k ≤ 50001 ≤ a, b ≤ na ≠ b).

Output

Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).

Sample test(s)
input
5 2 4 1
output
2
input
5 2 4 2
output
2
input
5 3 4 1
output
0
Note

Two sequences p1, p2, ..., pk and q1, q2, ..., qk are distinct, if there is such integer j (1 ≤ j ≤ k), that pj ≠ qj.

Notes to the samples:

  1. In the first sample after the first trip you are either on floor 1, or on floor 3, because |1 - 2| < |2 - 4| and |3 - 2| < |2 - 4|.
  2. In the second sample there are two possible sequences: (1, 2)(1, 3). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip.
  3. In the third sample there are no sought sequences, because you cannot choose the floor for the first trip.

题解:这是一道动归加优化的题目,动归方程很好写。D[i][j]=sigma(d[i-1][k])  (abs(k-j)<abs(k-b)) 但是很容易发现这样会超时因为时间复杂度是10^9,经过简单的分析以后可以发现每次都会重复的取某一段区间的和,所以这里采用前缀和进行优化(如果a>b就是后缀和,可以写一个函数省得麻烦)优化过后就可以过了。
时间给了两秒,非常充裕。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
const long long mod=1000000007;

using namespace std;

long long n,a,b,k,d[5005][5005],ans,sum[5005];

void solve(int p)
{
    if (a<b) for (int i=1;i<=b;i++) sum[i]=(sum[i-1]+d[p][i])%mod;
    else for (int i=n;i>=b;i--) sum[i]=(sum[i+1]+d[p][i])%mod;
}

int main()
{
    scanf("%I64d%I64d%I64d%I64d",&n,&a,&b,&k);
    memset(d,0,sizeof(d));
    d[0][a]=1;
    for (int i=1;i<=k;i++)
    {
        solve(i-1);
        for (int j=1;j<=n;j++) if ((b-a)*(b-j)>0 && a<b) d[i][j]=(sum[(j+b-1)/2]%mod-d[i-1][j]%mod+mod)%mod;
        else if ((b-a)*(b-j)>0 && a>b) d[i][j]=(sum[(j+b)/2+1]%mod-d[i-1][j]%mod+mod)%mod;
    }
    for (int j=1;j<=n;j++)
        ans=(ans+d[k][j])%mod;
    printf("%I64d",ans);
    return 0;
}



### Codeforces Div.2 比赛难度介绍 Codeforces Div.2 比赛主要面向的是具有基础编程技能到中级水平的选手。这类比赛通常吸引了大量来自全球不同背景的参赛者,包括大学生、高中生以及一些专业士。 #### 参加资格 为了参加 Div.2 比赛,选手的评级应不超过 2099 分[^1]。这意味着该级别的竞赛适合那些已经掌握了一定算法知识并能熟练运用至少一种编程语言的群参与挑战。 #### 题目设置 每场 Div.2 比赛一般会提供五至七道题目,在某些特殊情况下可能会更多或更少。这些题目按照预计解决难度递增排列: - **简单题(A, B 类型)**: 主要测试基本的数据结构操作和常见算法的应用能力;例如数组处理、字符串匹配等。 - **中等偏难题(C, D 类型)**: 开始涉及较为复杂的逻辑推理能力和特定领域内的高级技巧;比如图论中的最短路径计算或是动态规划入门应用实例。 - **高难度题(E及以上类型)**: 对于这些问题,则更加侧重考察深入理解复杂概念的能力,并能够灵活组合多种方法来解决问题;这往往需要较强的创造力与丰富的实践经验支持。 对于新手来说,建议先专注于理解和练习前几类较容易的问题,随着经验积累和技术提升再逐步尝试更高次的任务。 ```cpp // 示例代码展示如何判断一个数是否为偶数 #include <iostream> using namespace std; bool is_even(int num){ return num % 2 == 0; } int main(){ int number = 4; // 测试数据 if(is_even(number)){ cout << "The given number is even."; }else{ cout << "The given number is odd."; } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值