柯西(Cauchy)不等式——新版

什么是柯西(Cauchy)不等式

对于任意两组实数 a 1 , a 2 , . . . , a n ; b 1 , b 2 , . . . , b n a_1, a_2, ..., a_n; b_1, b_2, ..., b_n a1,a2,...,an;b1,b2,...,bn, 有 ∑ i = 1 n a i 2 ⋅ ∑ i = 1 n b i 2 ≥ ( ∑ i = 1 n a i b i ) 2 \displaystyle \sum_{i = 1}^n a_i^2 \cdot \sum_{i = 1}^n b_i^2 \ge (\sum_{i = 1}^n a_ib_i)^2 i=1nai2i=1nbi2(i=1naibi)2, 当且仅当 a i a_i ai b i ( i = 1 , 2 , . . . , n ) b_i (i = 1, 2, ..., n) bi(i=1,2,...,n)对应成比例, 即 a 1 b 1 = a 2 b 2 = . . . = a n b n \displaystyle \frac{a_1}{b_1} = \frac{a_2}{b_2} = ... = \frac{a_n}{b_n} b1a1=b2a2=...=bnan时等号成立. 这个不等式成为柯西(Cauchy)不等式.

柯西(Cauchy)不等式的证明

( a 1 2 + a 2 2 + . . . + a n 2 ) ( b 1 2 + b 1 2 + . . . + b n 2 ) ≥ ( a 1 b 1 + a 2 b 2 + . . . + a n b n ) 2 (a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_1^2 + ...+ b_n^2) \ge (a_1b_1 + a_2b_2 + ... + a_nb_n)^2 (a12+a22+...+an2)(b12+b12+...+bn2)(a1b1+a2b2+...+anbn)2
证明 :   a 1 2 x 2 − 2 a 1 b 1 x + b 1 2 = ( a 1 x − b 1 ) 2 ≥ 0 a 2 2 x 2 − 2 a 2 b 2 x + b 2 2 = ( a 2 x − b 2 ) 2 ≥ 0 . . . a n 2 x 2 − 2 a n b n x + b n 2 = ( a n x − b n ) 2 ≥ 0 相加得 : ( a 1 2 + a 2 2 + . . . + a n 2 ) x 2 − 2 ( a 1 b 1 + a 2 b 2 + . . . + a n b n ) x + ( b a 2 + b 2 2 + . . . + b n 2 ) ≥ 0 1 )   a 1 2 + a 2 2 + . . . + a n 2 = 0 a 1 = a 2 = . . . = a n = 0 此时 a 1 b 1 = a 2 b 2 = . . . = a n b n = 0 不等式左右两边都为 0 不等式成立 2 )   a 1 2 + a 2 2 + . . . + a n 2 ≠ 0 因为 a 1 2 + a 2 2 + . . . + a n 2 > 0 且 ( a 1 2 + a 2 2 + . . . + a n 2 ) x 2 − 2 ( a 1 b 1 + a 2 b 2 + . . . + a n b n ) x + ( b a 2 + b 2 2 + . . . + b n 2 ) ≥ 0 所以方程 ( a 1 2 + a 2 2 + . . . + a n 2 ) x 2 − 2 ( a 1 b 1 + a 2 b 2 + . . . + a n b n ) x + ( b a 2 + b 2 2 + . . . + b n 2 ) = 0 有 2 个相等实根或无实数根 所以 Δ ≤ 0 所以 4 ( a 1 b 1 + a 2 b 2 + . . . + a n b n ) 2 − 4 ( a 1 2 + a 2 2 + . . . + a n 2 ) ( b 1 2 + b 1 2 + . . . + b n 2 ) ≤ 0 所以 ( a 1 2 + a 2 2 + . . . + a n 2 ) ( b 1 2 + b 1 2 + . . . + b n 2 ) ≥ ( a 1 b 1 + a 2 b 2 + . . . + a n b n ) 2 当 a 1 2 x 2 − 2 a 1 b 1 x + b 1 2 = a 2 2 x 2 − 2 a 2 b 2 x + b 2 2 = . . . = a n 2 x 2 − 2 a n b n x + b n 2 = 0 时 即 ( a 1 x − b 1 ) 2 = ( a 2 x − b 2 ) 2 = . . . = ( a n x − b n ) 2 = 0 时 此时 a 1 x − b 1 = a 2 x − b 2 = . . . = a n x − b n = 0 此时 a 1 b 1 = a 2 b 2 = . . . = a n b n = 1 x 所以方程 ( a 1 2 + a 2 2 + . . . + a n 2 ) x 2 − 2 ( a 1 b 1 + a 2 b 2 + . . . + a n b n ) x + ( b a 2 + b 2 2 + . . . + b n 2 ) = 0 有 2 个相等实根 所以此时 Δ = 0 所以 ( a 1 2 + a 2 2 + . . . + a n 2 ) ( b 1 2 + b 1 2 + . . . + b n 2 ) = ( a 1 b 1 + a 2 b 2 + . . . + a n b n ) 2 所以 a 1 b 1 = a 2 b 2 = . . . = a n b n 时等号成立 综上所述 : 命题得证 . \begin{aligned} 证明: \: &a_1^2x^2 - 2a_1b_1x + b_1^2 = (a_1x - b_1)^2 \ge 0 \\ &a_2^2x^2 - 2a_2b_2x + b_2^2 = (a_2x - b_2)^2 \ge 0 \\ &...\\ &a_n^2x^2 - 2a_nb_nx + b_n^2 = (a_nx - b_n)^2 \ge 0 \\ &相加得: (a_1^2 + a_2^2 + ... + a_n^2)x^2 - 2(a_1b_1 + a_2b_2 + ... + a_nb_n)x + (b_a^2 + b_2 ^2 + ... + b_n^2) \ge 0 \\ &\begin{aligned} 1) \: & a_1^2 + a_2^2 + ... + a_n^2 = 0 \\ &a_1 = a_2 = ... = a_n = 0 \\ &此时 \frac{a_1}{b_1} = \frac{a_2}{b_2} = ... = \frac{a_n}{b_n} = 0 \\ &不等式左右两边都为0 \\ &不等式成立 \end{aligned} \\ &\begin{aligned} 2) \: & a_1^2 + a_2^2 + ... + a_n^2 \ne 0 \\ &因为 a_1^2 + a_2^2 + ... + a_n^2 > 0 且 (a_1^2 + a_2^2 + ... + a_n^2)x^2 - 2(a_1b_1 + a_2b_2 + ... + a_nb_n)x + (b_a^2 + b_2 ^2 + ... + b_n^2) \ge 0 \\ &所以方程 (a_1^2 + a_2^2 + ... + a_n^2)x^2 - 2(a_1b_1 + a_2b_2 + ... + a_nb_n)x + (b_a^2 + b_2 ^2 + ... + b_n^2) = 0 有2个相等实根或无实数根 \\ &所以 \Delta \le 0 \\ &所以 4(a_1b_1 + a_2b_2 + ... + a_nb_n)^2 - 4(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_1^2 + ... + b_n^2) \le 0 \\ &所以(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_1^2 + ... + b_n^2) \ge (a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \\ &当 a_1^2x^2 - 2a_1b_1x + b_1^2 = a_2^2x^2 - 2a_2b_2x + b_2^2 = ... = a_n^2x^2 - 2a_nb_nx + b_n^2 = 0 时 \\ &即 (a_1x - b_1)^2 = (a_2x - b_2)^2 = ... = (a_nx - b_n)^2 = 0时 \\ &此时 a_1x - b_1 = a_2x - b_2 = ... = a_nx - b_n = 0 \\ &此时 \frac{a_1}{b_1} = \frac{a_2}{b_2} = ... = \frac{a_n}{b_n} = \frac{1}{x} \\ &所以方程 (a_1^2 + a_2^2 + ... + a_n^2)x^2 - 2(a_1b_1 + a_2b_2 + ... + a_nb_n)x + (b_a^2 + b_2 ^2 + ... + b_n^2) = 0 有2个相等实根\\ &所以此时 \Delta = 0 \\ &所以(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_1^2 + ... + b_n^2) = (a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \\ &所以 \frac{a_1}{b_1} = \frac{a_2}{b_2} = ... = \frac{a_n}{b_n} 时等号成立 \end{aligned} \\ &综上所述: 命题得证. \end{aligned} 证明:a12x22a1b1x+b12=(a1xb1)20a22x22a2b2x+b22=(a2xb2)20...an2x22anbnx+bn2=(anxbn)20相加得:(a12+a22+...+an2)x22(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)01)a12+a22+...+an2=0a1=a2=...=an=0此时b1a1=b2a2=...=bnan=0不等式左右两边都为0不等式成立2)a12+a22+...+an2=0因为a12+a22+...+an2>0(a12+a22+...+an2)x22(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)0所以方程(a12+a22+...+an2)x22(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)=02个相等实根或无实数根所以Δ0所以4(a1b1+a2b2+...+anbn)24(a12+a22+...+an2)(b12+b12+...+bn2)0所以(a12+a22+...+an2)(b12+b12+...+bn2)(a1b1+a2b2+...+anbn)2a12x22a1b1x+b12=a22x22a2b2x+b22=...=an2x22anbnx+bn2=0(a1xb1)2=(a2xb2)2=...=(anxbn)2=0此时a1xb1=a2xb2=...=anxbn=0此时b1a1=b2a2=...=bnan=x1所以方程(a12+a22+...+an2)x22(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)=02个相等实根所以此时Δ=0所以(a12+a22+...+an2)(b12+b12+...+bn2)=(a1b1+a2b2+...+anbn)2所以b1a1=b2a2=...=bnan时等号成立综上所述:命题得证.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值