什么是柯西(Cauchy)不等式
对于任意两组实数 a 1 , a 2 , . . . , a n ; b 1 , b 2 , . . . , b n a_1, a_2, ..., a_n; b_1, b_2, ..., b_n a1,a2,...,an;b1,b2,...,bn, 有 ∑ i = 1 n a i 2 ⋅ ∑ i = 1 n b i 2 ≥ ( ∑ i = 1 n a i b i ) 2 \displaystyle \sum_{i = 1}^n a_i^2 \cdot \sum_{i = 1}^n b_i^2 \ge (\sum_{i = 1}^n a_ib_i)^2 i=1∑nai2⋅i=1∑nbi2≥(i=1∑naibi)2, 当且仅当 a i a_i ai与 b i ( i = 1 , 2 , . . . , n ) b_i (i = 1, 2, ..., n) bi(i=1,2,...,n)对应成比例, 即 a 1 b 1 = a 2 b 2 = . . . = a n b n \displaystyle \frac{a_1}{b_1} = \frac{a_2}{b_2} = ... = \frac{a_n}{b_n} b1a1=b2a2=...=bnan时等号成立. 这个不等式成为柯西(Cauchy)不等式.
柯西(Cauchy)不等式的证明
(
a
1
2
+
a
2
2
+
.
.
.
+
a
n
2
)
(
b
1
2
+
b
1
2
+
b
n
2
)
≥
(
a
1
b
1
+
a
2
b
2
+
.
.
.
+
a
n
b
n
)
2
(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_1^2 + b_n^2) \ge (a_1b_1 + a_2b_2 + ... + a_nb_n)^2
(a12+a22+...+an2)(b12+b12+bn2)≥(a1b1+a2b2+...+anbn)2
证明
:
a
1
2
x
2
−
2
a
1
b
1
x
+
b
1
2
=
(
a
1
x
−
b
1
)
2
≥
0
a
2
2
x
2
−
2
a
2
b
2
x
+
b
2
2
=
(
a
2
x
−
b
2
)
2
≥
0
.
.
.
a
n
2
x
2
−
2
a
n
b
n
x
+
b
n
2
=
(
a
n
x
−
b
n
)
2
≥
0
相加得
:
(
a
1
2
+
a
2
2
+
.
.
.
+
a
n
2
)
x
2
−
2
(
a
1
b
1
+
a
2
b
2
+
.
.
.
+
a
n
b
n
)
x
+
(
b
a
2
+
b
2
2
+
.
.
.
+
b
n
2
)
≥
0
1
)
a
1
2
+
a
2
2
+
.
.
.
+
a
n
2
=
0
a
1
=
a
2
=
.
.
.
=
a
n
=
0
不等式成立
2
)
a
1
2
+
a
2
2
+
.
.
.
+
a
n
2
≠
0
令
f
(
x
)
=
(
a
1
2
+
a
2
2
+
.
.
.
+
a
n
2
)
x
2
−
2
(
a
1
b
1
+
a
2
b
2
+
.
.
.
+
a
n
b
n
)
x
+
(
b
a
2
+
b
2
2
+
.
.
.
+
b
n
2
)
因为
a
1
2
+
a
2
2
+
.
.
.
+
a
n
2
>
0
且
(
a
1
2
+
a
2
2
+
.
.
.
+
a
n
2
)
x
2
−
2
(
a
1
b
1
+
a
2
b
2
+
.
.
.
+
a
n
b
n
)
x
+
(
b
a
2
+
b
2
2
+
.
.
.
+
b
n
2
)
≥
0
所以
f
(
x
)
为一个开口向上恒非负的二次函数
所以方程
(
a
1
2
+
a
2
2
+
.
.
.
+
a
n
2
)
x
2
−
2
(
a
1
b
1
+
a
2
b
2
+
.
.
.
+
a
n
b
n
)
x
+
(
b
a
2
+
b
2
2
+
.
.
.
+
b
n
2
)
=
0
的
Δ
≤
0
所以
(
a
1
2
+
a
2
2
+
.
.
.
+
a
n
2
)
(
b
1
2
+
b
1
2
+
b
n
2
)
≥
(
a
1
b
1
+
a
2
b
2
+
.
.
.
+
a
n
b
n
)
2
当
Δ
=
0
,
即
a
1
b
1
=
a
2
b
2
=
.
.
.
=
a
n
b
n
时等号成立
综上所述
:
命题得证
.
\begin{aligned} 证明: \: &a_1^2x^2 - 2a_1b_1x + b_1^2 = (a_1x - b_1)^2 \ge 0 \\ &a_2^2x^2 - 2a_2b_2x + b_2^2 = (a_2x - b_2)^2 \ge 0 \\ &...\\ &a_n^2x^2 - 2a_nb_nx + b_n^2 = (a_nx - b_n)^2 \ge 0 \\ &相加得: (a_1^2 + a_2^2 + ... + a_n^2)x^2 - 2(a_1b_1 + a_2b_2 + ... + a_nb_n)x + (b_a^2 + b_2 ^2 + ... + b_n^2) \ge 0 \\ &\begin{aligned} 1) \: & a_1^2 + a_2^2 + ... + a_n^2 = 0 \\ &a_1 = a_2 = ... = a_n = 0 \\ &不等式成立 \end{aligned} \\ &\begin{aligned} 2) \: & a_1^2 + a_2^2 + ... + a_n^2 \ne 0 \\ &令 f(x) = (a_1^2 + a_2^2 + ... + a_n^2)x^2 - 2(a_1b_1 + a_2b_2 + ... + a_nb_n)x + (b_a^2 + b_2 ^2 + ... + b_n^2) \\ &因为 a_1^2 + a_2^2 + ... + a_n^2 > 0 且 (a_1^2 + a_2^2 + ... + a_n^2)x^2 - 2(a_1b_1 + a_2b_2 + ... + a_nb_n)x + (b_a^2 + b_2 ^2 + ... + b_n^2) \ge 0 \\ &所以 f(x) 为一个开口向上恒非负的二次函数 \\ &所以方程 (a_1^2 + a_2^2 + ... + a_n^2)x^2 - 2(a_1b_1 + a_2b_2 + ... + a_nb_n)x + (b_a^2 + b_2 ^2 + ... + b_n^2) = 0的 \Delta \le 0 \\ &所以(a_1^2 + a_2^2 + ... + a_n^2)(b_1^2 + b_1^2 + b_n^2) \ge (a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \\ &当 \Delta = 0, 即 \frac{a_1}{b_1} = \frac{a_2}{b_2} = ... = \frac{a_n}{b_n}时等号成立 \end{aligned} \\ &综上所述: 命题得证. \end{aligned}
证明:a12x2−2a1b1x+b12=(a1x−b1)2≥0a22x2−2a2b2x+b22=(a2x−b2)2≥0...an2x2−2anbnx+bn2=(anx−bn)2≥0相加得:(a12+a22+...+an2)x2−2(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)≥01)a12+a22+...+an2=0a1=a2=...=an=0不等式成立2)a12+a22+...+an2=0令f(x)=(a12+a22+...+an2)x2−2(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)因为a12+a22+...+an2>0且(a12+a22+...+an2)x2−2(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)≥0所以f(x)为一个开口向上恒非负的二次函数所以方程(a12+a22+...+an2)x2−2(a1b1+a2b2+...+anbn)x+(ba2+b22+...+bn2)=0的Δ≤0所以(a12+a22+...+an2)(b12+b12+bn2)≥(a1b1+a2b2+...+anbn)2当Δ=0,即b1a1=b2a2=...=bnan时等号成立综上所述:命题得证.