【ybtoj】繁忙都市

这是一道关于城市道路改造的问题,目标是找到连接所有交叉路口的最小生成树,以最少的道路改造数量和最小的最大分值。题目要求使用Kruskal算法解决,输出包括改造道路的数量和最大分值。

繁忙都市


题目描述

城市 C 是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。城市 C 的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。这些道路是双向的,且把所有的交叉路口直接或间接地连接起来。每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:
1.改造的那些道路能够把所有的交叉路口直接或间接地连通起来。
2.在满足要求1的情况下,改造的道路尽量少。
3.在满足要求1、2的情况下,改造的那些道路中分值最大的道路分值尽量小。
任务:作为市规划局的你,应当作出最佳的决策,选择那些应当被修建的道路。

输入格式

第一行有两个整数n,m表示城市有n个交叉路口,m条道路。
接下来m行是对每条道路的描述u,v,c 表示交叉路口u和v之间有道路相连,分值为c。

输出格式

两个整数s,max,表示你选出了几条道路,分值最大的那条道路的分值是多少。

输入样例

4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8

输出样例

3 6

解题思路

最小生成树模板题,用Kruskal按边贪心比较,最后答案为n-1和max。

Code

#include<iostream>
#include<algorithm>
#include<cstring>
### ybtoj 平台问题21276题目详情 ybtoj平台上的编号为21276的问题涉及一种基于区间的动态规划算法,即区间DP。这类问题通常围绕特定的操作序列展开,在这个问题中是以消除木块为核心[^1]。 #### 动态规划定义与思路 对于该类问题的核心在于如何定义状态以及转移方程的设计。在此案例里,`dp[i][j]`表示从第i个位置到第j个位置之间完成目标所需的最小代价或最优解路径数。通过这种方式可以有效地减少重复计算并优化整体性能表现。 #### 解决方案概述 解决方案采用了递归的方式来进行动态规划求解而不是传统的迭代方法。这种方法不仅简化了逻辑实现还保持了较低的时间复杂度。具体来说,当面对一系列待处理的数据时(比如一排不同颜色的木块),程序会尝试找到能够一次性清除最多相同类型的连续子串,并将其作为基础情况来构建更复杂的场景解答。 ```python def solve(dp, i, j): if i > j: return 0 while (i < j) and (blocks[j] != blocks[i]): j -= 1 if i == j: return scores[1] # Case where we merge the same color at both ends. res = solve(dp, i + 1, j - 1) + scores[2] # Try merging with any other matching block before 'i'. for k in range(i + 1, j): if blocks[k] == blocks[i]: res = max(res, solve(dp, i + 1, k - 1) + solve(dp, k, j)) dp[i][j] = res return res ``` 此代码片段展示了如何利用Python语言编写解决此类问题的方法之一。注意这里假设存在两个全局变量`blocks[]`存储每一块的颜色信息和`scores[]`记录对应数量得分表;同时为了防止多次访问相同的索引组合而引入了一个二维数组`dp[][]`用于缓存中间结果以提高效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值