Check the difficulty of problems
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 6653 | Accepted: 2889 |
Description
Organizing a programming contest(竞赛) is not an easy job. To avoid making the problems too difficult, the organizer usually expect the
contest result satisfy the following two terms:
1. All of the teams solve at least one problem.
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.
Now the organizer has studied out the contest problems, and through the result of preliminary(初步的) contest, the organizer can estimate(估计) the probability(可能性) that a certain team can successfully solve a certain problem.
Given the number of contest(竞赛) problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume(承担) that team i solves problem j with the probability(可能性) Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate(计算) the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?
1. All of the teams solve at least one problem.
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.
Now the organizer has studied out the contest problems, and through the result of preliminary(初步的) contest, the organizer can estimate(估计) the probability(可能性) that a certain team can successfully solve a certain problem.
Given the number of contest(竞赛) problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume(承担) that team i solves problem j with the probability(可能性) Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate(计算) the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?
Input
The input(投入) consists of several test cases. The first line of each test case contains three integers(整数) M
(0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates(表明) the
end of input, and should not be processed.
Output
For each test case, please output(输出) the answer in a separate line. The result should be rounded to three digits(数字) after
the decimal(小数) point.
Sample Input
2 2 2 0.9 0.9 1 0.9 0 0 0
Sample Output
0.972
题意: ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 问 每队至少解出一题且冠军队至少解出N道题的概率。 解析:DP 设dp[i][j][k]表示第i个队在前j道题中解出k道的概率 则: dp[i][j][k]=dp[i][j-1][k-1]*p[j][k]+dp[i][j-1][k]*(1-p[j][k]); 先初始化算出dp[i][0][0]和dp[i][j][0]; 设s[i][k]表示第i队做出的题小于等于k的概率 则s[i][k]=dp[i][M][0]+dp[i][M][1]+``````+dp[i][M][k]; 则每个队至少做出一道题概率为P1=(1-s[1][0])*(1-s[2][0])*```(1-s[T][0]); 每个队做出的题数都在1~N-1的概率为P2=(s[1][N-1]-s[1][0])*(s[2][N-1]-s[2][0])*```(s[T][N-1]-s[T][0]); 最后的答案就是P1-P2 */
#include<stdio.h> #include<string.h> double dp[1100][32][32]; double s[1100][32]; double p[1100][32]; int M,T,N; int main() { int i,j,k; while(~scanf("%d%d%d",&M,&T,&N)) { memset(dp,0,sizeof(dp)); memset(s,0,sizeof(s)); memset(p,0,sizeof(p)); if(!M&&!T&&!N) break; for(i=1;i<=T;i++) { for(j=1;j<=M;j++) scanf("%lf",&p[i][j]); } for(i=1;i<=T;i++)//第i队 在零个题里做出0题的概率 当然为1 dp[i][0][0]=1; for(i=1;i<=T;i++)//第i队 在j个题里做出0题的概率 { for(j=1;j<=M;j++) dp[i][j][0]=dp[i][j-1][0]*(1-p[i][j]); } for(i=1;i<=T;i++)//i队 在前j个题里做出k个题的概率 其实以上都是初始化 这里才是核心 { for(j=1;j<=M;j++) { for(k=1;k<=j;k++) { dp[i][j][k]=dp[i][j-1][k]*(1-p[i][j])+dp[i][j-1][k-1]*p[i][j]; } } } // for(i=1;i<=T;i++)//第i队做出0题的概率,相当于初始化 s[i][0]=dp[i][M][0]; for(i=1;i<=T;i++)//第i队做出1-j题的概率 for(j=1;j<=M;j++) s[i][j]+=dp[i][M][j]+s[i][j-1]; double p=1.0,q=1.0; for(i=1;i<=T;i++) { p*=(s[i][M]-s[i][0]);//每对至少做对1道题 q*=(s[i][N-1]-s[i][0]);//每对做出1到n-1题的概率 } printf("%.3f\n",p-q); } return 0; }