03-树3 Tree Traversals Again (25 分)
An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop
Sample Output:
3 4 2 6 5 1
# include <iostream>
# include <stack>
# include <queue>
# include <string>
using namespace std;
vector<int>inorder;
vector<int>pre;
vector<int> postorder;
void print_postorder(int pre_l, int pre_r, int in_l, int in_r, int post_l, int post_r) {
if (pre_l > pre_r)
return;
int n = pre_r - pre_l + 1;
postorder[post_r] = pre[pre_l];
post_r--;
for (int i = in_l; i < in_l + n; ++i) {
if (inorder[i] == pre[pre_l]) {
print_postorder(pre_l + 1, pre_l + i - in_l, in_l, i - 1, post_l, post_l + i - in_l - 1);
print_postorder(pre_l + i - in_l + 1, pre_r, i + 1, in_r, post_l + i - in_l, post_r);
break;
}
}
}
int main() {
int n;
cin >> n;
int m = 2 * n;
stack<int>s;
for (int i = 0; i < m; ++i) {
string ss;
int temp;
cin >> ss;
if (ss == "Push") {
cin >> temp;
s.push(temp);
pre.emplace_back(temp);
}
else if(ss == "Pop"){
inorder.emplace_back(s.top());
s.pop();
}
}
//现在v代表的是中序遍历序列
//pre代表的是先序遍历序列
postorder.resize(pre.size(), 0);
print_postorder(0, pre.size() - 1, 0, inorder.size() - 1, 0, postorder.size() - 1);
for (int i = 0; i < postorder.size(); ++i)
if (i != postorder.size() - 1)
cout << postorder[i] << " ";
else
cout << postorder[i] << endl;
return 0;
}