04-树5 Root of AVL Tree (25 分)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
一道经典的自平衡二叉排序树的题,QAQ
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
typedef struct AVLNode {
int val;
struct AVLNode *left;
struct AVLNode *right;
int height;
//以此结点为根结点的树的高度
AVLNode(){}
AVLNode(int val):val(val), height(0), left(nullptr), right(nullptr){}
}AVLNode;
typedef AVLNode *AVLTree;
int GetHeight(AVLNode *p) {
if (!p)
return 0;
p->height = max(GetHeight(p->left), GetHeight(p->right)) + 1;
return p->height;
}
AVLTree RRrotation(AVLNode *root) {
AVLNode *temp = root->right;
root->right = temp->left;
temp->left = root;
return temp;
}
AVLTree LLrotation(AVLNode *root) {
AVLNode *temp = root->left;
root->left = temp->right;
temp->right = root;
return temp;
}
AVLTree RLrotation(AVLNode *root) {
AVLNode *temp = root->right;
root->right = LLrotation(temp);
return RRrotation(root);
}
AVLTree LRrotation(AVLNode *root) {
AVLNode *temp = root->left;
root->left = RRrotation(temp);
return LLrotation(root);
}
AVLTree InsertNode( AVLNode *root, AVLNode *p ) {
//把p插入到以root为根结点的AVL树中
if (!root) {
p->height = 1;
return p;
}
if (p->val > root->val) {
root->right = InsertNode(root->right, p);
//右子树上插入了一个结点,然后判断左右子树的高度差是否已经需要调整
if (GetHeight(root->left) - GetHeight(root->right) == -2) {
if (p->val > root->right->val) {
//在某结点的右孩子的右子树上插入了一个结点导致失衡,应进行左单旋转
//RR旋转
root = RRrotation(root);
}
else if (p->val < root->right->val) {
root = RLrotation(root);
}
}
}
else if (p->val < root->val) {
root->left = InsertNode(root->left, p);
if (GetHeight(root->left) - GetHeight(root->right) == 2) {
if (p->val > root->left->val) {
//在某结点的左孩子的右子树上插入了一个结点导致失衡,应进行LR旋转
root = LRrotation(root);
}
else if (p->val < root->left->val) {
root = LLrotation(root);
}
}
}
return root;
}
int main() {
int n;
cin >> n;
AVLNode *root = nullptr;
while (n--) {
int t;
cin >> t;
AVLNode *temp = new AVLNode(t);
root = InsertNode(root, temp);
}
cout << root->val << endl;
}