HDU 1003 (最大子序列和)

本文介绍了一种求解整数序列中具有最大和的连续子序列的问题,并提供了一个具体的算法实现示例。输入包括多组测试数据,每组包含一系列整数;输出则为每组测试数据中找到的最大子序列和及其起始与结束位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Max Sum



Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
 

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
 

Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
 

Sample Output
Case 1: 14 1 4 Case 2:
7 1 6
#include <stdio.h>
int main()
{
	int t,j;
	scanf("%d",&t);
    for(j=1;j<=t;j++)
	{
		int n,i;
		int sum=0,max=-2000,start=1,temp=1,end;
		scanf("%d",&n);
		int a[n+1];
		for(i=1;i<=n;i++)
		{
		   scanf("%d",&a[i]);			  
			   sum+=a[i];
			 if(max<=sum)
			   {
			   	start=temp;
			     max=sum;
			     end=i;
			   }
		    if(sum<0)
			{
			   sum=0;
			   temp=i+1;
		    }
		}
		printf("Case %d:\n%d %d %d\n",j,max,start,end);
		if(j!=t)
		printf("\n");
	}
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值