lc 338. 比特位计数(dp

本文介绍了一种计算非负整数范围内每个数二进制中1的数量的方法,并给出了两种算法实现,一种是直接计算法,另一种是利用动态规划优化后的线性时间复杂度算法。

338. 比特位计数

难度中等432

给定一个非负整数 num。对于 0 ≤ i ≤ num 范围中的每个数字 ,计算其二进制数中的 1 的数目并将它们作为数组返回。

示例 1:

输入: 2
输出: [0,1,1]

示例 2:

输入: 5
输出: [0,1,1,2,1,2]

进阶:

  • 给出时间复杂度为O(n*sizeof(integer))的解答非常容易。但你可以在线性时间O(n)内用一趟扫描做到吗?
  • 要求算法的空间复杂度为O(n)
  • 你能进一步完善解法吗?要求在C++或任何其他语言中不使用任何内置函数(如 C++ 中的 __builtin_popcount)来执行此操作。

最简单的做法,当然是:

class Solution {
    public int[] countBits(int num) {

        int[] rs=new int[num+1];
        for(int i=0;i<num+1;i++){
            int j=i;
            while(j!=0){
                rs[i]+=j&1;
                j>>=1;
            }
        }
        return rs;
    }
}

要用O(n),可以通过dp实现:

(这个递推关系很巧妙,没做过要想到还有点难度

对于一个数,如果他是偶数,那么他的1的个数和他/2对应数的个数相同,比如4的二进制:100,2的二进制是10,之所以相同,是因为除以二相当于右移一位,而偶数的最低为一定是0

如果是奇数,那么他一定大于0,并且,他刚好比他前面的偶数多一个1,就是最低位那个

class Solution {
    public int[] countBits(int num) {

        int[] dp=new int[num+1];
        dp[0]=0;
        if(num<1){
            return dp;
        }
        dp[1]=1;
        for(int i=2;i<num+1;i++){
            if((i&1)==1){
                dp[i]=1+dp[i-1];
            }else{
                dp[i]=dp[i>>1];
            }
        }
        return dp;
    }
}

 

基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物一氧化氮(NO₂)的空间分布与浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护与大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了一套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性与环境预测的可靠性。 在模型架构方面,项目设计了一种多分支神经网络,用于分别处理光谱特征与气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量与一致性;后期处理则涉及模型输出的物理量转换与结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进一步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动与污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理与公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据与多模态特征深度学习技术,发展了一套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理与决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值