oj坐公交车

本文介绍了一种解决从起点到终点寻找最短公交路线时间的问题。通过输入站点数量、起点终点编号及各站点间直达时间,利用Floyd算法求解最短路径。

题目描述

chaoswinder 想去南京市区游览名胜古迹,他计划从校门坐公交车去目的地。

他找到一张公交车运行时间表,查到了各个站之间坐车直达所花费的时间。由于路上时有堵车,两个站来回所花费的时间一般也不同。

现在 chaoswinder 想要你帮他算一下从学校门口坐车,最快到达目的地所需的时间。(等车时间不计算在内)

输入描述

第一行输入一个数字 n (2≤n≤500) ,代表路上可能经过的站点的总数量。

第二行输入两个数字 st,ed (1≤st,ed≤n) ,代表校门口的车站和目的地车站的下标,下标从 1 开始。

接下来 n 行,每行 n 个数字,第 i 行的第 j 个数字 q 代表从 i 站点坐车到 j 站点(单向)所需要的时间。0 表示 i 站点和 j 站点相同,-1 代表 i 站到 j 站没有直达车(仍然可能有反向的直达车)。

输出描述

输出 1 行,仅一个数字,代表从校门口到目的地所花费的最短时间。如果不能到达,输出 - 1。

样例输入

Copy to Clipboard
5 2 3 0 8 1 5 9 5 0 -1 2 -1 2 3 0 -1 2 -1 -1 3 0 2 -1 -1 8 -1 0 

样例输出

Copy to Clipboard
5 
#include<bits/stdc++.h> 
using namespace std;
const int N = 1e4 + 10;
const int INF = 1e9 + 10;

int n;
int a[N][N];

int main(){
	int st,ed;
	cin >> n >> st >> ed;
	for(int i = 1;i <= n;i ++)
			for(int j = 1;j <= n;j ++)
				if(i == j)
					a[i][j] == 0;
				else
					a[i][j] == INF; 
	for(int i = 1;i <= n;i ++)
			for(int j = 1;j <= n;j ++){
				cin >> a[i][j];
				if(a[i][j] == -1)
					a[i][j] = INF;
			}
				
	
				
	for(int k = 1;k <= n;k ++)
		for(int i = 1;i <= n;i ++)
			for(int j = 1;j <= n;j ++)
				if(a[i][j] > a[i][k] + a[k][j])
					a[i][j] = a[i][k] + a[k][j];
		cout << a[st][ed] << endl;
		
	
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值