题目链接:
UVA 11149 Power of Matrix
分析:
二分解决。例如计算
S(7)=A+A2+A3+A4+A5+A6+A7
可以改写为
S(7)=(A+A2+A3)+A4+A4∗(A+A2+A3)=A4+A4∗(E+A+A2+A3),
其中E为单位矩阵. 但是需要考虑奇偶性,例如
S(6)=A+A2+A3+A4+A5+A6=A+A2+A3+A3∗(A+A2+A3)=A3∗(A+A2+A3)
注意:
退出条件是n==0而不是(n==0&&k==0),无限WA啊!
//Binary Solution 0K 163MS
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
struct Matrix{
int row,col;
int data[50][50];
}unit;
inline void init(Matrix& x,int n)//将n阶矩阵化为单位矩阵
{
x.row=x.col=n;
memset(x.data,0,sizeof(x.data));
for(int i=1;i<=x.row;i++)
x.data[i][i]=1;
}
inline Matrix multiply(Matrix a,Matrix b)//矩阵乘法
{
Matrix ans;
ans.row=a.row,ans.col=b.col;
memset(ans.data,0,sizeof(ans.data));
for(int i=1;i<=ans.row;i++){
for(int j=1;j<=ans.col;j++){
for(int k=1;k<=a.col;k++){
ans.data[i][j]+=(a.data[i][k]*b.data[k][j])%10;
ans.data[i][j]%=10;
}
}
}
return ans;
}
inline Matrix add(Matrix a,Matrix b)//矩阵加法
{
Matrix ans;
ans.row=a.row,ans.col=a.col;
memset(ans.data,0,sizeof(ans.data));
for(int i=1;i<=ans.row;i++){
for(int j=1;j<=ans.col;j++){
ans.data[i][j]=(a.data[i][j]%10+b.data[i][j]%10)%10;
}
}
return ans;
}
inline Matrix quick_power(Matrix a,int m)//矩阵快速幂
{
Matrix ans,tmp=a;
ans.row=a.row,ans.col=a.col;
init(ans,a.row);
while(m){
if(m&1) ans=multiply(ans,tmp);
tmp=multiply(tmp,tmp);
m>>=1;
}
return ans;
}
inline Matrix bin_solve(Matrix A,int k)//sigma(A^i)(1<=i<=k)
{
if(k==1) return A;
Matrix B=quick_power(A,(k+1)>>1);
Matrix C=bin_solve(A,k>>1);
if(k&1){
return add(B,multiply(C,add(unit,B)));//unit是n阶单位矩阵
}else {
return add(C,multiply(B,C));
}
}
int main()
{
//freopen("Hin.txt","r",stdin);
//freopen("Hout.txt","w",stdout);
int n,k;
while(~scanf("%d %d",&n,&k)&&n){
//卧槽!必须只用n来判断!尼玛,真坑!
init(unit,n);
//if(n==0&&k==0) break;//写成这样果断WA!卧槽 !
Matrix a,ans;
a.row=a.col=n;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
int t;
scanf("%d",&t);
a.data[i][j]=t%10;
}
}
ans=bin_solve(a,k);
for(int i=1;i<=ans.row;i++){
for(int j=1;j<=ans.col;j++){
if(j>1) printf(" ");
printf("%d",ans.data[i][j]%10);
}
printf("\n");
}
printf("\n");
}
return 0;
}
/*
* 分析:
* 利用等比矩阵和单位矩阵的性质,设普通矩阵A,单位矩阵E,零矩阵Z。构造矩阵
* | A E | | A^2 A+E | | A^3 A^2+E |
* S =| Z E | ,则 S^2=| Z E | ,S^3=| Z E |...
* | A^k A^(k-1)+A^(k-2)+...+A+E |
* S^k=| Z E |,显然右上角区域减去单位矩阵就是结果。
*/
//Geometric Solution 0K 129MS
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=45;
struct Matrix{
int row,col;
int data[maxn*2][maxn*2];
};
inline Matrix multiply(Matrix a,Matrix b)
{
Matrix ans;
ans.row=a.row,ans.col=b.col;
memset(ans.data,0,sizeof(ans.data));
for(int i=1;i<=ans.row;i++){
for(int j=1;j<=ans.col;j++){
for(int k=1;k<=a.col;k++){
ans.data[i][j]+=a.data[i][k]*b.data[k][j]%10;
ans.data[i][j]%=10;
}
}
}
return ans;
}
inline Matrix quick_power(Matrix a,int m)
{
Matrix ans,tmp=a;
ans.row=a.row,ans.col=a.col;
memset(ans.data,0,sizeof(ans.data));
for(int i=1;i<=ans.row;i++)
ans.data[i][i]=1;
while(m){
if(m&1) ans=multiply(ans,tmp);
tmp=multiply(tmp,tmp);
m>>=1;
}
return ans;
}
int main()
{
freopen("Hin.txt","r",stdin);
int n,k;
while(~scanf("%d %d",&n,&k)&&n){
Matrix ans;
ans.row=ans.col=n*2;
for(int i=1;i<=2*n;i++){
for(int j=1;j<=2*n;j++){
if(i<=n&&j<=n){ //左上角的输入矩阵
int t;
scanf("%d",&t);
ans.data[i][j]=t%10;
}else if(i<=n&&j>n){ //右上角的单位矩阵
if(i+n==j) ans.data[i][j]=1;
else ans.data[i][j]=0;
}else if(i>n&&j<=n){ //左下角的零矩阵
ans.data[i][j]=0;
}else if(i>n&&j>n){ //右下角的单位矩阵
if(j==i) ans.data[i][j]=1;
else ans.data[i][j]=0;
}
}
}
ans=quick_power(ans,k+1);
for(int i=1;i<=n;i++){
for(int j=n+1;j<=2*n;j++){
if(j>n+1) printf(" ");
if(i+n==j) printf("%d",(ans.data[i][j]+9)%10);
else printf("%d",ans.data[i][j]%10);
}
printf("\n");
}
printf("\n");
}
return 0;
}