使用硬否定改进视觉语义嵌入

该文详细介绍了如何下载和评估一个使用硬否定方法改进的视觉语义嵌入预训练模型。通过运行特定脚本,可以观察到模型在不同批次的损失、处理时间和关键性能指标,如平均召回率。评估过程包括计算Image-to-Text和Text-to-Image的R@K值,以及中位数和平均排名。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用硬否定改进视觉语义嵌入

项目地址

1.下载支持包

import nltk
nltk.download()

之后选择punkt下载

2.下载数据

wget http://www.cs.toronto.edu/~faghri/vsepp/vocab.tar
wget http://www.cs.toronto.edu/~faghri/vsepp/data.tar
wget http://www.cs.toronto.edu/~faghri/vsepp/runs.tar

the path of extracted files for data.tar as $DATA_PATH

files for models.tar as $RUN_PATH

Extract vocab.tar to ./vocab directory.

Update: The vocabulary was originally built using all sets (including test set captions). Please see issue #29 for details. Please consider not using test set captions if building up on this project.

3.评估预训练模型

(1)运行结果
from vocab import Vocabulary
import evaluation
evaluation.evalrank('$RUN_PATH/coco_vse++/model_best.pth.tar', data_path='$DATA_PATH', split='test')

output

Test: [0/40]	Le 63.6889 (63.6889)	Time 0.131 (0.000)	
Test: [10/40]	Le 63.4920 (65.4107)	Time 0.016 (0.000)	
Test: [20/40]	Le 62.3412 (64.8969)	Time 0.016 (0.000)	
Test: [30/40]	Le 65.4460 (65.0923)	Time 0.017 (0.000)	
Images: 1000, Captions: 5000
rsum: 386.7
Average i2t Recall: 67.7
Image to text: 43.7 74.8 84.6 2.0 8.8
Average t2i Recall: 61.2
Text to image: 33.8 68.8 81.0 3.0 12.9
  • Test: [0/40] Le 63.6889 (63.6889) Time 0.131 (0.000),这是每一个小批量(batch)的测试结果。[0/40]表示的是当前测试的批次,Le 63.6889 (63.6889)是模型在当前批次的损失(Loss), Time 0.131 (0.000)表示的是这一批次的处理时间。

  • Images: 1000, Captions: 5000,这表示在测试集中有1000个图片和5000个对应的标题

  • rsum: 386.7这是对所有的召回率(Recall)进行求和的结果

  • Average i2t Recall: 67.7”,这表示的是从图像到文本(Image to Text, i2t)的平均召回率。即R@1, R@5 和 R@10 的平均值

  • Image to text: 43.7 74.8 84.6 2.0 8.8”,这分别代表的是从图像到文本(Image to Text, i2t)的R@1, R@5, R@10, Median Rank以及Mean Rank。

  • Average t2i Recall: 61.2”,这表示的是从文本到图像(Text to Image, t2i)的平均召回率。即R@1, R@5 和 R@10 的平均值

  • Text to image: 33.8 68.8 81.0 3.0 12.9”,这分别代表的是从文本到图像(Text to Image, t2i)的R@1, R@5, R@10, Median Rank以及Mean Rank。

具体来说:

  • R@K 是一个常用的评估指标,表示的是在所有排序结果中,正确结果出现在前K个的概率。

  • Median Rank 是正确结果在排序中的中位数排名。

  • Mean Rank 是正确结果在排序中的平均排名。

要在MSCOCO上进行交叉验证,可以对使用——data_name coco训练的模型传递fold5=True

(2)evaluation.py解释:
①class AverageMeter和class LogCollector

分别用于计算平均值和收集日志信息。这两个类主要被用于记录和显示训练过程中的指标,如loss和accuracy。

class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=0):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / (.0001 + self.count)

    def __str__(self):
        """String representation for logging
        """
        # for values that should be recorded exactly e.g. iteration number
        if self.count == 0:
            return str(self.val)
        # for stats
        return '%.4f (%.4f)' % (self.val, self.avg)


class LogCollector(object):
    """A collection of logging objects that can change from train to val"""

    def __init__(self):
        # to keep the order of logged variables deterministic
        self.meters = OrderedDict()

    def update(self, k, v, n=0):
        # create a new meter if previously not recorded
        if k not in self.meters:
            self.meters[k] = AverageMeter()
        self.meters[k].update(v, n)

    def __str__(self):
        """Concatenate the meters in one log line
        """
        s = ''
        for i, (k, v) in enumerate(self.meters.items()):
            if i > 0:
                s += '  '
            s += k + ' ' + str(v)
        return s

    def tb_log(self, tb_logger, prefix='', step=None):
        """Log using tensorboard
        """
        for k, v in self.meters.iteritems():
            tb_logger.log_value(prefix + k, v.val, step=step)
②def encode_data

这个函数对输入的图像和文本数据进行编码。参数model是用于编码数据的模型,data_loader用于加载数据,log_step决定了每处理多少批次数据后打印一次日志,logging则决定了如何打印日志。

def encode_data(model, data_loader, log_step=10, logging=print):
    """Encode all images and captions loadable by `data_loader`
    """
    batch_time = AverageMeter()
    val_logger = LogCollector()

    # switch to evaluate mode
    model.val_start()

    end = time.time()

    # numpy array to keep all the embeddings
    img_embs = None
    cap_embs = None
    for i, (images, captions, lengths, ids) in enumerate(data_loader):
        # make sure val logger is used
        model.logger = val_logger

        # compute the embeddings
        img_emb, cap_emb = model.forward_emb(images, captions, lengths,
                                             volatile=True)

        # initialize the numpy arrays given the size of the embeddings
        if img_embs is None:
            img_embs = np.zeros((len(data_loader.dataset), img_emb.size(1)))
            cap_embs = np.zeros((len(data_loader.dataset), cap_emb.size(1)))

        # preserve the embeddings by copying from gpu and converting to numpy
        img_embs[ids] = img_emb.data.cpu().numpy().copy()
        cap_embs[ids] = cap_emb.data.cpu().numpy().copy()

        # measure accuracy and record loss
        model.forward_loss(img_emb, cap_emb)

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % log_step == 0:
            logging('Test: [{0}/{1}]\t'
                    '{e_log}\t'
                    'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                    .format(
                        i, len(data_loader), batch_time=batch_time,
                        e_log=str(model.logger)))
        del images, captions

    return img_embs, cap_embs
③def evalrank

此函数用于评估模型的性能。model_path是模型的路径,data_path是数据的路径,split决定了使用哪部分数据进行评估,fold5决定是否使用5折交叉验证。

def evalrank(model_path, data_path=None, split='dev', fold5=False):
    """
    Evaluate a trained model on either dev or test. If `fold5=True`, 5 fold
    cross-validation is done (only for MSCOCO). Otherwise, the full data is
    used for evaluation.
    """
    # load model and options
    checkpoint = torch.load(model_path)
    opt = checkpoint['opt']
    if data_path is not None:
        opt.data_path = data_path

    # load vocabulary used by the model
    with open(os.path.join(opt.vocab_path,
                           '%s_vocab.pkl' % opt.data_name), 'rb') as f:
        vocab = pickle.load(f)
    opt.vocab_size = len(vocab)

    # construct model
    model = VSE(opt)

    # load model state
    model.load_state_dict(checkpoint['model'])

    print('Loading dataset')
    data_loader = get_test_loader(split, opt.data_name, vocab, opt.crop_size,
                                  opt.batch_size, opt.workers, opt)

    print('Computing results...')
    img_embs, cap_embs = encode_data(model, data_loader)
    print('Images: %d, Captions: %d' %
          (img_embs.shape[0] / 5, cap_embs.shape[0]))

    if not fold5:
        # no cross-validation, full evaluation
        r, rt = i2t(img_embs, cap_embs, measure=opt.measure, return_ranks=True)
        ri, rti = t2i(img_embs, cap_embs,
                      measure=opt.measure, return_ranks=True)
        ar = (r[0] + r[1] + r[2]) / 3
        ari = (ri[0] + ri[1] + ri[2]) / 3
        rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2]
        print("rsum: %.1f" % rsum)
        print("Average i2t Recall: %.1f" % ar)
        print("Image to text: %.1f %.1f %.1f %.1f %.1f" % r)
        print("Average t2i Recall: %.1f" % ari)
        print("Text to image: %.1f %.1f %.1f %.1f %.1f" % ri)
    else:
        # 5fold cross-validation, only for MSCOCO
        results = []
        for i in range(5):
            r, rt0 = i2t(img_embs[i * 5000:(i + 1) * 5000],
                         cap_embs[i * 5000:(i + 1) *
                                  5000], measure=opt.measure,
                         return_ranks=True)
            print("Image to text: %.1f, %.1f, %.1f, %.1f, %.1f" % r)
            ri, rti0 = t2i(img_embs[i * 5000:(i + 1) * 5000],
                           cap_embs[i * 5000:(i + 1) *
                                    5000], measure=opt.measure,
                           return_ranks=True)
            if i == 0:
                rt, rti = rt0, rti0
            print("Text to image: %.1f, %.1f, %.1f, %.1f, %.1f" % ri)
            ar = (r[0] + r[1] + r[2]) / 3
            ari = (ri[0] + ri[1] + ri[2]) / 3
            rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2]
            print("rsum: %.1f ar: %.1f ari: %.1f" % (rsum, ar, ari))
            results += [list(r) + list(ri) + [rsum, ar, ari]]

        print("-----------------------------------")
        print("Mean metrics: ")
        mean_metrics = tuple(np.array(results).mean(axis=0).flatten())
        print("rsum: %.1f" % (mean_metrics[10] * 6))
        print("Average i2t Recall: %.1f" % mean_metrics[11])
        print("Image to text: %.1f %.1f %.1f %.1f %.1f" %
              mean_metrics[:5])
        print("Average t2i Recall: %.1f" % mean_metrics[12])
        print("Text to image: %.1f %.1f %.1f %.1f %.1f" %
              mean_metrics[5:10])

    torch.save({'rt': rt, 'rti': rti}, 'ranks.pth.tar')

在 evaluation.py 中,主要的评价结果被打印出来的部分是在 evalrank 函数中,特别是下面的代码段:

if not fold5:
    # no cross-validation, full evaluation
    r, rt = i2t(img_embs, cap_embs, measure=opt.measure, return_ranks=True)
    ri, rti = t2i(img_embs, cap_embs,
                  measure=opt.measure, return_ranks=True)
    ar = (r[0] + r[1] + r[2]) / 3
    ari = (ri[0] + ri[1] + ri[2]) / 3
    rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2]
    print("rsum: %.1f" % rsum)
    print("Average i2t Recall: %.1f" % ar)
    print("Image to text: %.1f %.1f %.1f %.1f %.1f" % r)
    print("Average t2i Recall: %.1f" % ari)
    print("Text to image: %.1f %.1f %.1f %.1f %.1f" % ri)

在这段代码中:

  • i2t 是 Image-to-Text 的评价函数,它返回了一个五元组(R@1, R@5, R@10, Median Rank 和 Mean Rank)以及一个排名向量(这里没有用到)。这五元组中的每一个值都是对应的评价指标,具体地,R@k 表示真实文本在图像描述生成文本的排序中排在前 k 的概率;Median Rank 和 Mean Rank 则是真实文本在排序中的中位数排名和平均排名。

  • t2i 是 Text-to-Image 的评价函数,它同样返回一个五元组和一个排名向量,这个五元组的含义和 i2t 的一样,只是评价的方向相反,从文本找图像。

  • ar 是 Average i2t Recall,即 Image-to-Text 的平均召回率,取的是 R@1, R@5 和 R@10 的平均值。

  • ari 是 Average t2i Recall,即 Text-to-Image 的平均召回率,取的是 R@1, R@5 和 R@10 的平均值。

  • rsum 是所有这些评价指标的和,即 Image-to-Text 的 R@1, R@5, R@10 和 Text-to-Image 的 R@1, R@5, R@10 的总和。

  • 如果 fold5 为True,代码中还包括一个交叉验证的评价过程,但这主要适用于 MSCOCO 数据集的评价,过程基本上和上面的类似,只是在五折的每一折上都进行了评价,最后对结果取平均。

④def i2t

此函数用于图像到文本的检索任务,输入的images和captions分别表示图像和文本的嵌入,npts表示数据的数量,measure决定了如何计算图像和文本嵌入之间的相似度,return_ranks决定是否返回每个文本的排名。

def i2t(images, captions, npts=None, measure='cosine', return_ranks=False):
    """
    Images->Text (Image Annotation)
    Images: (5N, K) matrix of images
    Captions: (5N, K) matrix of captions
    """
    if npts is None:
        npts = int(images.shape[0] / 5)
    index_list = []

    ranks = numpy.zeros(npts)
    top1 = numpy.zeros(npts)
    for index in range(npts):

        # Get query image
        im = images[5 * index].reshape(1, images.shape[1])

        # Compute scores
        if measure == 'order':
            bs = 100
            if index % bs == 0:
                mx = min(images.shape[0], 5 * (index + bs))
                im2 = images[5 * index:mx:5]
                d2 = order_sim(torch.Tensor(im2).cuda(),
                               torch.Tensor(captions).cuda())
                d2 = d2.cpu().numpy()
            d = d2[index % bs]
        else:
            d = numpy.dot(im, captions.T).flatten()
        inds = numpy.argsort(d)[::-1]
        index_list.append(inds[0])

        # Score
        rank = 1e20
        for i in range(5 * index, 5 * index + 5, 1):
            tmp = numpy.where(inds == i)[0][0]
            if tmp < rank:
                rank = tmp
        ranks[index] = rank
        top1[index] = inds[0]

    # Compute metrics
    r1 = 100.0 * len(numpy.where(ranks < 1)[0]) / len(ranks)
    r5 = 100.0 * len(numpy.where(ranks < 5)[0]) / len(ranks)
    r10 = 100.0 * len(numpy.where(ranks < 10)[0]) / len(ranks)
    medr = numpy.floor(numpy.median(ranks)) + 1
    meanr = ranks.mean() + 1
    if return_ranks:
        return (r1, r5, r10, medr, meanr), (ranks, top1)
    else:
        return (r1, r5, r10, medr, meanr)
⑤def t2i

此函数与i2t类似,但是用于文本到图像的检索任务。

def t2i(images, captions, npts=None, measure='cosine', return_ranks=False):
    """
    Text->Images (Image Search)
    Images: (5N, K) matrix of images
    Captions: (5N, K) matrix of captions
    """
    if npts is None:
        npts = int(images.shape[0] / 5)
    ims = numpy.array([images[i] for i in range(0, len(images), 5)])

    ranks = numpy.zeros(5 * npts)
    top1 = numpy.zeros(5 * npts)
    for index in range(npts):

        # Get query captions
        queries = captions[5 * index:5 * index + 5]

        # Compute scores
        if measure == 'order':
            bs = 100
            if 5 * index % bs == 0:
                mx = min(captions.shape[0], 5 * index + bs)
                q2 = captions[5 * index:mx]
                d2 = order_sim(torch.Tensor(ims).cuda(),
                               torch.Tensor(q2).cuda())
                d2 = d2.cpu().numpy()

            d = d2[:, (5 * index) % bs:(5 * index) % bs + 5].T
        else:
            d = numpy.dot(queries, ims.T)
        inds = numpy.zeros(d.shape)
        for i in range(len(inds)):
            inds[i] = numpy.argsort(d[i])[::-1]
            ranks[5 * index + i] = numpy.where(inds[i] == index)[0][0]
            top1[5 * index + i] = inds[i][0]

    # Compute metrics
    r1 = 100.0 * len(numpy.where(ranks < 1)[0]) / len(ranks)
    r5 = 100.0 * len(numpy.where(ranks < 5)[0]) / len(ranks)
    r10 = 100.0 * len(numpy.where(ranks < 10)[0]) / len(ranks)
    medr = numpy.floor(numpy.median(ranks)) + 1
    meanr = ranks.mean() + 1
    if return_ranks:
        return (r1, r5, r10, medr, meanr), (ranks, top1)
    else:
        return (r1, r5, r10, medr, meanr)

4.Training new models

Run train.py:

python train.py --data_path "$DATA_PATH" --data_name coco_precomp --logger_name 
runs/coco_vse++ --max_violation

在这里插入图片描述

结果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值