首次将GUI Agent模型与完整配套基建同步开放,支持手搓党一键部署!
这就是阶跃星辰刚刚开源的GELab-Zero。
其中4B版本的GUI Agent模型在手机端、电脑端等多个GUI榜单上全面刷新同尺寸模型性能纪录,取得SOTA成绩。
随着AI在手机等消费终端的普及,Mobile Agent正从“能不能用”迈向“能否规模化落地”。
GUI Agent是执行能力最强的形态之一。它基于视觉理解即可适配几乎所有App,无需厂商额外改造,接入成本极低。
此外,阶跃还同步开源了基于真实业务场景的自建评测标准AndroidDaily,以期推动GUI领域模型评测向消费级、规模化应用发展。
一、同尺寸性能 SOTA,端到端、轻量化、速度快
要知道,让GUI Agent在不同品牌与系统版本的设备上顺畅运行并不轻松。
移动生态的高度碎片化让开发者需处理多设备ADB连接、依赖安装、权限配置、推理服务部署、任务编排与回放等繁琐流程,工程成本高昂,精力难以聚焦在策略创新与体验设计上。
要推动移动端Agent真正规模化,必须首先降低开发与使用门槛,让开发者专注于创造价值,而非重复搭建底层设施。
基于此,阶跃开源了GELab-Zero。
它主要包含三部分:
- 一个能在本地运行的GUI Agent模型GELab-Zero-4B-preview
- 即插即用的完整推理工程基建,解决所有脏活累活
- 基于真实业务场景的自建评测标准AndroidDaily
研究团队在ScreenSpot、OSWorld、MMBench、Android World多个开源基准测试上对GELab-Zero-4B-preview模型进行了全面评估。
这些基准测试涵盖了GUI理解、定位、交互等多个维度。
从测试结果可以看出,GELab-Zero-4B-preview在多项开源基准测试中超越其他主流模型,拿下同尺寸SOTA。

值得一提的是,GELab-Zero-4B-preview的表现还超越了参数量更大的GUI-Owl-32B等模型,性能更优,也更易部署。

来看一下研究团队给出的示例场景。
复杂任务
场景1:在外卖平台同时采购跨品类、不同规格和数量的商品。
Prompt:去饿了么离我最近的盒马鲜生购买:红颜草莓300g、秘鲁比安卡蓝莓125g(果径18mm)、当季新鲜黄心土豆500g、粉糯贝贝南瓜750g、盒马大颗粒虾滑、2瓶盒马纯黑豆豆浆300ml、小王子夏威夷果可可脆120g、盒马菠菜面、盒马五香牛肉、5袋好欢螺柳州螺狮粉(加辣加臭)400g、m&m’s牛奶巧克力豆100g
可以看到,模型精准识别了物品信息,并顺畅地完成了多步骤、重复性的购买操作。
场景2:在企业福利APP中领取餐券。
Prompt:打开给到App,在我的,下滑寻找,员工权益-奋斗食代,帮我领劵。
上述示例展示了GELab-Zero-4B-preview执行的能力和范围具有很强的泛化性,无论在国民级APP还是小众产品平台,都可以顺利完成任务。
模糊指令
场景1:在某个视频平台上播放指定演员的经典作品。
Prompt:在腾讯视频上找一部成龙的经典动作片播放。
接到指令后,GELab-Zero-4B-preview自主拆解“经典”这一需求,确定执行标准。
过程中,模型先打开腾讯视频,识别并关闭了弹窗,搜索“成龙”后在电影类目中选择了页面上成龙评分最高的代表作播放。
场景2:找一个周末能带孩子玩的地方。
Prompt:帮我找个周末能带孩子去玩的地方。
接到指令后,模型首先在内容平台搜索“北京周末带娃”,然后自主判断衡量标准后为用户推荐北京园博园“顽酷奇遇”,并为用户提炼出该地点的亮点——“有巨型装置卡通,亲子活动丰富”。
可以看到,GELab-Zero-4B-preview模型能够很好地执行复杂任务和模糊指令,不仅可以准确、流畅地执行涉及到多步骤、多主体、重复操作的任务,也能对“好看”“适合玩的”“经典”等偏笼统和主观性的指令进行自主拆解,确定执行路径和标准。
二、GUI+基建=GUI Agent MCP,一键拉起部署
针对GUI智能体,研究人员构建了一整套完整的技术架构体系,可以一键拉起获得类似开源GUI Agent MCP的体验。
具体能力如下:
-
轻量级本地推理
支持4B模型在消费级硬件上运行,兼顾低延迟与隐私。
-
一键任务启动
提供统一部署流水线,自动处理环境依赖和设备管理。
-
多设备任务分发
可以分发到多台手机并记录交互轨迹,实现可观测、可复现。
-
多种Agent模式
涵盖ReAct闭环、多智能体协作以及定时任务等多种工作模式。

这些能力让GELab-Zero能够灵活应对真实场景的复杂任务流,并为后续扩展提供扎实底座。
Agent开发者可基于这套基建快速测试新想法、验证交互策略;企业级用户则能直接复用这套基建,将MCP能力快速植入到产品业务中。
三、自建并开源贴合真实业务场景的评测基准
此外,研究团队基于手机、IoT、汽车等行业头部公司的真实合作案例,建立了高度贴合业务场景的评测基准。
当前的主流基准测试,大部分聚焦于生产力类应用*(如邮件与文档处理)*。
然而在日常真实场景中,用户高频依赖的却是生活服务类应用,如外卖、打车、社交、支付等,而这部分场景不仅覆盖面更广,也更能体现当下GUI Agent 的实用价值。
为此研究者提出 AndroidDaily,一个面向真实世界、动态演进的多维基准体系。
它聚焦在现代生活六大核心维度:饮食、出行、购物、居住、信息消费、娱乐,并优先选择在这些类别中具有代表性*(高频使用、应用商店日活排名靠前)的主流应用进行测试,高度还原真实任务执行流程(包括询问用户更多信息补充输入、高危操作请求用户接管)*。
评测结果显示,GELab-Zero-4B-preview在AndroidDaily测试中准确率达到73.4% ,在移动端复杂任务中表现优秀。

为了平衡评估的全面性和执行效率,AndroidDaily采用了静态评测和端到端评测双轨评估体系。
静态评测考察模型的grounding*(界面理解、元素识别)*和action规划能力,用于检验其在推理与执行一致性等基础层面的表现。
端到端测试重点衡量GUI Agent在真实环境中处理复杂任务时的执行效果与稳定性。
其中,静态测试包含3146个actions,提供任务描述和逐步的屏幕截图,要求Agent预测每一步的动作类型和动作值*(如点击坐标、输入文本)*,主要评估数值准确率。
这种方法无需复杂的工程基础设施,可以快速、低成本地进行大规模模型迭代和测试。
而端到端测试包含235个任务,典型任务场景包括出行交通*(打车、导航、公共交通等)、购物消费(电商购物、支付、订单管理等)、社交通讯(消息发送、社交互动等)、内容消费(新闻阅读、视频观看、内容收藏等)、本地服务(外卖、到店服务)*等。
在完全功能化的测试环境*(如真实设备或模拟器)*中进行,Agent需要从头到尾自主执行任务,最终以整体任务成功率作为评价指标,能真实反映智能体在复杂环境中的综合能力。

团队表示,希望通过GELab-Zero的开源,进一步降低移动端Agent的开发门槛,让更多开发者能够快速构建和验证自己的想法。
未来,研究团队将始终坚持开放、可控、隐私优先的原则,持续优化模型性能、扩展跨平台支持、丰富生态工具链。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】

1013

被折叠的 条评论
为什么被折叠?



