大语言模型暴发以来,我见过太多公司陷入 “AI功能堆砌” 的陷阱 —— 打开产品界面,“智能助手”、“自动生成” 的按钮随处可见,但没解决客户为什么要用的价值问题。
这股以为“接入AI就赶上了时代快车”的想法,正在让SaaS+AI沦为新的同质化竞争重灾区。
真正的 SaaS+AI 玩家,早已跳出 “技术炫技” 的误区。有的企业用 “提示词+公有云大模型” 撑起 AI 面试官的规模化落地;有的产品则靠 “小模型+微调”实现自动记账场景,两者选择截然不同却同样成功——这背后藏着 SaaS 公司选择 AI 技术路线的核心逻辑:不是比谁的技术更先进,而是比谁的技术更贴合场景、更能转化为客户价值。
一、三大AI技术路线的特点
在硅谷,Prompt / RAG / 微调 这三条 AI 路线的选型,已经形成比较成熟的实践模式和经验教训。
- Prompt + API 为主
很多早期阶段或者快速迭代的产品,直接用大型模型(OpenAI, Anthropic, Llama-系开源等)+ prompt 设计来试市场。速度快,投入低。比如 Notion AI、Coda 等工具,在初期很多功能都是基于 API + prompt +用户反馈迭代做出来。市场验证快,功能铺设快。 - RAG(检索增强)作为增强事实性与私有知识的手段
当有“企业有自己文档 /内容 /政策 /合同 /知识库”的情况,就加入 RAG。RAG 常常被用于客户支持、内部知识问答、合同分析、政策问答等场景。它在很多公司是“Prompt 模型 + 检索知识库 + prompt 工程”的组合。 - 在高要求/垂直领域中做微调
当客户需求对准确性/一致性/风格/专有领域知识要求高的时候,会考虑微调。比如法律、医疗、金融这些行业。案例里比较典型的有法律 AI (如 Harvey)就是微调法律案例库的模型,这种模型在律师用户中被偏好。硅谷里这些公司一旦规模和收入到一定程度,就开始做微调。
我把3个技术路线列表对比如下:
实际运用中,三条路线在很多产品里是混合使用的。
在具体一个产品的落地不同阶段里,可以遵循“Prompt 验证 → RAG 加知识库 → 在关键模块/高频任务上微调”这样的演进路径。
二、分阶段组合策略:SaaS 公司的 “AI 路线图”
成功的 SaaS+AI 产品,从来不是 “押注单一技术”,而是 “按阶段动态组合工具”。
(一)初创期:提示词为主,RAG 为辅,用最低成本验证需求
初创期的核心目标是 “活下去”,必须用最小的投入确认 “客户愿意为 AI 功能付费”。这时候的技术组合逻辑是 “提示词搭框架,RAG 补基础认知”。
对初创 SaaS产品 来说,这个阶段要避免两个误区:一是不要追求 “完美功能”,能用提示词实现 80% 的需求就够了;二是不要过早自建知识库,优先用公开数据或客户自愿提供的基础资料,降低 RAG 的搭建成本。
(二)成长期:RAG + 轻量微调,平衡体验与成本
当客户量突破一定数量(例如100家),就需要提升 AI 功能的 “体验质感”,避免因效果差导致流失。这时候的技术组合逻辑是 “RAG 做知识覆盖,轻量微调解决高频痛点”。
这个阶段的关键是 “聚焦高频场景”,不要贪多求全。挑出客户使用最多、投诉最多的 1-2 个场景做微调,既能快速看到效果,又能控制成本。
(三)成熟期:微调为主,提示词 + RAG 补位,构建不可替代的竞争力
当 SaaS 公司进入成熟期,客户的 “替换成本” 就成了核心竞争力。这时候的技术组合逻辑是 “微调做核心决策,提示词 + RAG 做规范和补充”,形成 “专业 + 高效 + 稳定” 的闭环。
这个阶段的核心是 “把数据资产转化为定价权”。通过微调让 AI 功能的效果远超竞品,再结合 RAG 和提示词提升稳定性,最终支撑更大的客户价值并提高客单价/ARR。
三、微调的落地陷阱:不是所有 SaaS 都适合 “all in 微调”
虽然微调是成熟期的核心,但很多 SaaS 公司在落地时,都会陷入 “技术冲动” 的陷阱 —— 盲目投入微调,结果效果差、成本高,反而拖累业务。
(一)先问 “数据够不够”:没有 1 万条标注数据,别碰微调
微调的效果,本质是 “数据质量 × 数据量” 决定的。
本号之前文章讲过,慧算账能把小模型调到 94% 的准确率,核心是有 2 亿条真实记账数据;而如果数据量不足,微调的效果可能还不如提示词。
目前的经验值是:垂直场景的标注数据至少要达到 1 万条,且覆盖 80% 以上的核心需求,微调才有意义。
对数据不足的 SaaS 公司,不如先做 “数据积累”:通过产品功能引导客户产生标注数据(如让会计对 AI自动 记账结果做出 “确认/修改”),或与行业协会合作获取公开数据,等数据量达标后再启动微调。
(二)再算 “成本账”:隐性成本可能吃掉利润
很多 SaaS 公司只看到 “微调单次成本低”,却忽略了合规、维护等隐性 “长期维护成本”。对 SaaS 公司来说,“性价比” 永远比 “技术先进” 更重要。
(三)最后看 “场景匹配度”:非核心场景的微调都是浪费
不是所有场景都需要微调。如果强行微调,不仅效果提升有限,还会增加成本。
判断场景是否需要微调,有一个简单的标准:该场景是否直接影响客户的核心业务结果。自动记账直接影响客户的财务合规,自动记账的被采纳率低于90%则无法被人类会计接纳,必须微调;而一场 AI 初筛面试与人类面试官的一致性达到70%就可以接受,不影响最终录用决策,就没必要微调。
四、关于护城河
有硅谷那边的博主质疑中国软件公司为何总要想护城河?
我留言回复她:这与中国在世界贸易格局中的位置有关。在一个每个客户都在严控成本的战场上,没有护城河的产品会在3个月内被复制、6个月内被打成低价红海。
而SaaS+AI 的护城河从来不是技术名词本身,而是技术能否锚定对手拿不走的资源。
单独从AI产品的角度看,护城河只有两条:
- 行业/领域深度认知。例如,北森在测评等人才研究上20多年的积累,使其在AI面试产品设计上具备了巨大的认知优势。
- 独有数据飞轮。例如,数美目前每天处理数十亿张图片和文本,十年来积累了万亿次过滤。数据飞轮效应令新玩家难以入场。
相对于谁都可以用AI技术做出的新产品来说,以上者两条才是真正的壁垒。
可能有技术出身的朋友不同意我的这个看法。毕竟自己动手做了那么久,突破了那么多AI技术难关,怎么会没有护城河呢?
但咱们回想一下,30年来在国内有哪个产品只用技术就征服了市场?
你在技术上的突破、产品体验的优化,是做出好产品的基础,但如果没有认知和数据托底,这些成果很容易被竞品模仿 —— 它们能抄你的‘AI 面试流程’,却抄不走你 20 年的人才测评逻辑;能搭你的‘数据处理框架’,却搭不出你万亿次过滤的飞轮。
这也是为什么在三个技术路线上,我会更倾向模型微调—— 因为微调的本质,就是把“行业认知”和“独有数据”一起焊进模型参数,让技术路线和护城河深度绑定。
而RAG路线虽然也包含了“行业认知”,但缺少“数据飞轮”的保护。
仅提示词的路线则非常单薄。
五、结语:SaaS+AI 的竞争,本质是 “场景认知” 的竞争
根据以上评估,我画了一张雷达图,展示3个技术路线在6个维度上的优劣:

当然,我还要强调一下在实际运用中,3个技术是可以在不同阶段混合使用的。
同时,以上分析和案例最终指向一个结论:SaaS 公司的 AI 技术路线选择,从来不是 “技术好坏” 的判断,而是 “场景适配” 的决策。
提示词适合 “冷启动验证”,RAG 适合 “专业领域知识补充”,微调适合 “构建壁垒”—— 它们没有绝对的优劣,只有 “阶段和场景的匹配度”。
对 SaaS 公司来说,在纠结 “该用哪种技术”之前,需要先想清楚三个问题:
- 我能帮客户解决什么问题?
- 我的产品处于哪个发展阶段?
- 我有足够的数据和资金支撑技术投入吗?
想清楚这三个问题,技术路线的答案自然会浮现。
毕竟,在 SaaS+AI 的世界里,最牛的不是 “别人不会的技术”,而是 “最懂客户的技术”。
如何学习大模型 AI ?
我国在AI大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着Al技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国Al产业的创新步伐。加强人才培养,优化教育体系,国际合作并进,是破解困局、推动AI发展的关键。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

2025最新大模型学习路线
明确的学习路线至关重要。它能指引新人起点、规划学习顺序、明确核心知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
对于从来没有接触过AI大模型的同学,我帮大家准备了从零基础到精通学习成长路线图以及学习规划。可以说是最科学最系统的学习路线。

针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
大模型经典PDF书籍
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路!

配套大模型项目实战
所有视频教程所涉及的实战项目和项目源码等

博主介绍+AI项目案例集锦
MoPaaS专注于Al技术能力建设与应用场景开发,与智学优课联合孵化,培养适合未来发展需求的技术性人才和应用型领袖。


这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】

为什么要学习大模型?
2025人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

适合人群
- 在校学生:包括专科、本科、硕士和博士研究生。学生应具备扎实的编程基础和一定的数学基础,有志于深入AGI大模型行业,希望开展相关的研究和开发工作。
- IT行业从业人员:包括在职或失业者,涵盖开发、测试、运维、产品经理等职务。拥有一定的IT从业经验,至少1年以上的编程工作经验,对大模型技术感兴趣或有业务需求,希望通过课程提升自身在IT领域的竞争力。
- IT管理及技术研究领域人员:包括技术经理、技术负责人、CTO、架构师、研究员等角色。这些人员需要跟随技术发展趋势,主导技术创新,推动大模型技术在企业业务中的应用与改造。
- 传统AI从业人员:包括算法工程师、机器视觉工程师、深度学习工程师等。这些AI技术人才原先从事机器视觉、自然语言处理、推荐系统等领域工作,现需要快速补充大模型技术能力,获得大模型训练微调的实操技能,以适应新的技术发展趋势。

课程精彩瞬间
大模型核心原理与Prompt:掌握大语言模型的核心知识,了解行业应用与趋势;熟练Python编程,提升提示工程技能,为Al应用开发打下坚实基础。
RAG应用开发工程:掌握RAG应用开发全流程,理解前沿技术,提升商业化分析与优化能力,通过实战项目加深理解与应用。
Agent应用架构进阶实践:掌握大模型Agent技术的核心原理与实践应用,能够独立完成Agent系统的设计与开发,提升多智能体协同与复杂任务处理的能力,为AI产品的创新与优化提供有力支持。
模型微调与私有化大模型:掌握大模型微调与私有化部署技能,提升模型优化与部署能力,为大模型项目落地打下坚实基础。
顶尖师资,深耕AI大模型前沿技术
实战专家亲授,让你少走弯路

一对一学习规划,职业生涯指导
- 真实商业项目实训
- 大厂绿色直通车
人才库优秀学员参与真实商业项目实训
以商业交付标准作为学习标准,具备真实大模型项目实践操作经验可写入简历,支持项目背调
大厂绿色直通车,冲击行业高薪岗位
文中涉及到的完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费】







1312

被折叠的 条评论
为什么被折叠?



