小白必看!AI 大模型微调是什么?一篇大白话文章讲透核心逻辑

你有没有想过,AI 大模型就像一个刚从名牌大学毕业的高材生,脑子里装满了各种知识,却在面对具体工作时有点 “水土不服”?比如一个能写文章的大模型,让它专门写美食测评就可能差点意思;一个会聊天的 AI,要它精准回答医学问题也会力不从心。这时候,“微调” 就派上用场了。简单说,微调就是给这个 “高材生” 做岗前培训,让它在某个领域变得更专业。

1、什么是微调?

微调就是在已经训练好的大模型基础上,用你自己的数据继续训练,让模型更符合你的特定需求。

img

CPT(ContinualPre-Training)继续预训练最基础的微调方式。你拿到一个预训练好的模型,然后用大量无标签的文本数据继续训练它。

SFT(Supervised Fine-Tuning)监督微调最常用的微调方式。你准备好问题-答案对,教模型如何回答特定类型的问题。

DPO(Direct Preference Optimization)偏好训练最新的微调技术,通过对比“好答案“和“坏答案"来训练模型。

img

2、三种微调方式详解

CPT(Continued Pre-Training,继续预训练)

通过无标注数据进行无监督继续预训练,强化或新增模型特定能力。

数据要求

需要大量文本数据(通常几GB到几十GB)数据质量要高,最好是你目标领域的专业内容

适用场景

让模型学习特定领域的知识,比如医学、法律、金融

增强模型对某种语言或方言的理解

让模型熟悉你所在行业的专业术语

img

SFT(Supervised Fine-Tuning)监督微调

有监督微调,增强模型指令跟随的能力,提供全参和高效训练方式。

数据要求

通常需要几千到几万条高质量的问答对

答案要准确、风格统一

img

适用场景

训练客服机器人

创建特定任务的助手(比如代码助手、写作助手)

让模型学会特定的对话风格

img

DPO(Direct Preference Optimization)偏好训练

引入负反馈,降低幻觉,使得模型输出更符合人类偏好

工作原理

给模型同一个问题的两个不同答案

告诉模型哪个答案更好

模型学会倾向于生成更好的答案

img

适用场景

让模型的回答更符合人类偏好

减少有害内容的生成

提高回答的质量和安全性

img

3、非必要不微调

1.成本高:需要大量GPU资源和时间

2.技术门槛高:需要懂机器学习、数据处理、模型训练3.数据要求严格:需要高质量、大量的训练数据4.维护复杂:模型更新后需要重新微调

4、优先考虑替代方案

1.提示词工程

通过精心设计的提示词让模型理解你的需求

成本低,见效快,容易调整

适合大部分使用场景

img

2.RAG

让模型检索相关文档后再回答

能够获取最新信息

不需要重新训练模型

什么情况有必要微调

1.特定领域的专业知识

当你的业务涉及非常专业的领域,而通用模型的知识不够用时

如:医疗诊断系统、法律文书生成、特定行业的技术支持。

img

2.特殊的输出格式要求

需要模型输出特定格式,而提示词难以稳定控制时。如:结构化数据提取、特定的代码生成规范、标准化的报告格式。

3.私有数据的深度理解

需要模型深度理解你的私有数据,而RAG检索效果不够好时。如:企业内部知识库的深度应用、个人化推荐系统、基于历史数据的预测

4.性能要求极高的场景

对响应速度和准确性要求都很高的场景。如:实时客服系统、高频交易的决策支持、大规模自动化处理

img

5、总结

微调是一个强大的工具,但不是万能药。在考虑微调之前,先试试提示词优化和RAG。只有在确实需要深度定制,且有足够资源投入时,才考虑微调。

选择微调平台时,技术小白推荐阿里云百炼,有技术基础的推荐LLaMA-Factory。记住,工具是为了解决问题,不要为了微调而微调。

2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享**

一、2025最新大模型学习路线

一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

L1级别:AI大模型时代的华丽登场

L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。

L2级别:AI大模型RAG应用开发工程

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

L3级别:大模型Agent应用架构进阶实践

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。

L4级别:大模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。

二、大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

三、大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

四、大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

五、大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。


因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享

### 大模型简介 大模型之所以被称为“”,不仅因为其使用的数据集规模庞,更重要的是这些模型拥有量的参数。这种规模使得它们能够捕捉到更为复杂的数据特征并具备更强的学习能力[^1]。 #### 数据量与多样性的重要性 为了构建有效的大模型,训练所用的数据集不仅要足够,而且应当涵盖广泛的内容领域。例如,在自然语言处理方面,理想的训练材料应包括但不限于在线书籍、新闻报道、学术论文以及社交平台上的交流内容等多样化的文本资源[^2]。 #### 功能特性 除了依赖于庞的数据支持外,真正意义上的大模型还需满足两个重要条件: - **创新能力**:即能够在已有知识基础上创造出新颖而合理的输出; - **泛化性能**:意味着该类模型可以在不同场景下稳定工作而不局限于特定任务或环境。 #### 参数的作用 在大模型中,参数扮演着至关重要的角色。作为模型内部可调整的变量集合,参数存储了从训练数据中学到的信息。随着参数数量的增长,模型对于输入刺激响应的方式变得更加精细和灵活,进而提高了整体的表现水平。 ```python import torch.nn as nn class LargeModel(nn.Module): def __init__(self, input_size, hidden_layers, output_size): super(LargeModel, self).__init__() layers = [] current_size = input_size # 构建多层神经网络结构 for next_layer_size in hidden_layers: layers.append(nn.Linear(current_size, next_layer_size)) layers.append(nn.ReLU()) current_size = next_layer_size layers.append(nn.Linear(current_size, output_size)) self.model_structure = nn.Sequential(*layers) def forward(self, x): return self.model_structure(x) ``` 此代码片段展示了一个简单的型深度学习模型框架定义过程,其中`hidden_layers`列表中的元素数目代表隐藏层数目及其宽度(即每层节点数),这直接影响到了最终形成的参数总量小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值