现在的大模型基本都具备零样本泛化能力,但要在真实场景中做特定的适配,还是得花好几个小时来对模型进行微调。
即便是像LoRA这样的参数高效方法,也只能缓解而不能消除每个任务所需的微调成本。
刚刚,包括尤洋教授在内的来自新加坡国立大学、得克萨斯大学奥斯汀分校等机构的研究人员,提出了一种全新的「拖拽式大语言模型」——Drag-and-Drop LLMs!
论文地址:https://arxiv.org/abs/2506.16406
DnD是一种基于提示词的参数生成器,能够对LLM进行无需训练的自适应微调。
通过一个轻量级文本编码器与一个级联超卷积解码器的组合,DnD能在数秒内,仅根据无标签的任务提示词,生成针对该任务的LoRA权重矩阵。
显然,对于那些需要快速实现模型专业化的场景,DnD可以提供一种相较于传统微调方法更强大、灵活且高效的替代方案。
总结来说,DnD的核心优势如下:
-
极致效率:其计算开销比传统的全量微调低12,000倍。
-
卓越性能:在零样本学习的常识推理、数学、编码及多模态基准测试中,其性能比最强大的、需要训练的LoRA模型还要高出30%。
-
强大泛化:仅需无标签的提示词,即可在不同领域间展现出强大的泛化能力。
DnD实现方法
通过观察,研究人员发现,LoRA适配器无非是其训练数据的一个函数:梯度下降会将基础权重「拖拽」至一个特定任务的最优状态。
如果能够直接学习从提示到权重的映射,那么就可以完全绕过梯度下降过程。
DnD通过两个核心步骤获得「拖拽」能力:准备训练数据(左上)与训练参数生成器(右上)。
-
在准备数据时,将模型参数(权重)与特定数据集的条件(提示词)进行显式配对。
-
在训练时,DnD模型将条件作为输入来生成参数,并使用原始的LoRA参数作为监督信号进行学习。
基于这些洞见,团队提出了「拖拽式大语言模型」,它无需微调即可生成任务专属的权重。
团队首先在多个不同数据集上分别训练并保存相应的LoRA适配器。
为了赋予模型「拖拽」的能力,团队将这些数据集的提示词与收集到的LoRA权重进行随机配对,构成DnD模型的训练数据——即「提示词-参数」对。
参数生成器是一个由级联卷积块构成的解码器。
参数生成器的模块细节如下:每个超卷积块包含三个超卷积模块,用于在不同维度上提取并融合特征信息。
训练时,团队采用一个现成的文本编码器提取提示词的嵌入向量,并将其输入生成器。
生成器会预测出模型权重,团队利用其与真实LoRA权重之间的均方误差(MSE)损失来对其进行优化。
在推理阶段,团队只需将来自全新数据集(训练中未见过)的提示词输入DnD,仅需一次前向传播,即可获得为该任务量身定制的参数。
效果评估
零样本学习效果
在新的(测试)数据集上的泛化能力。
在所有未曾见过的数据集上,DnD在准确率上都显著超越了那些用于训练的LoRA模型。
DnD能为数学、代码和多模态问答等更复杂的任务生成参数。
在这些任务上依然展现出强大的零样本学习能力。
DnD在多种任务上超越了基座LLM,展现出显著的「拖拽」增强效果。
DnD能够很好地扩展至更大的7B基座模型,并在更复杂的LiveCodeBench基准测试中保持强劲性能。
通过利用已微调的LoRA作为训练数据,DnD成功地在输入提示词与模型参数之间建立了联系。
团队向DnD输入其训练阶段从未见过的数据集提示词,让它为这些新任务直接生成参数,以此来检验其零样本学习能力。
DnD在权重空间中生成的参数与原始参数分布接近,并且在性能上表现良好。
实验结果表明,在零样本测试集上,团队的方法相较于训练所用的LoRA模型的平均性能,取得了惊人的提升,并且能够很好地泛化到多种真实世界任务和不同尺寸的LLM。
对比其他微调方法
为了进一步展示DnD的强大能力,团队将其与全量样本微调(full-shot tuning)、少样本学习(few-shot)以及上下文学习(in-context learning)进行了对比。
令人惊讶的是,DnD的性能超越了LoRA全量微调的效果,同时速度快了2500倍。
虽然经过更多轮次的迭代,全量微调的性能会超过DnD,但其代价是高达12000倍的推理延迟。
此外,在样本数少于256个时,DnD的性能稳定地优于少样本学习和上下文学习。
尤其值得注意的是,少样本学习和上下文学习都需要依赖带标签的答案,而DnD仅仅需要无标签的提示词。
DnD能够达到与全量样本相当甚至更优的性能,同时速度提高了2500-12000倍
2024最新版优快云大礼包:《AGI大模型学习资源包》免费分享**
一、2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1级别:AI大模型时代的华丽登场
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
L2级别:AI大模型RAG应用开发工程
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3级别:大模型Agent应用架构进阶实践
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
L4级别:大模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
二、大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
三、大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
四、大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
五、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取