间接粗对准实际上是在解析粗对准的基础上进行的改进,增强了一下抗角晃动的能力。相对于解析粗对准直接求解姿态阵,间接粗对准将姿态阵进行链式分解,如下:
Cbn=Cn0nCb0n0Cbb0
C_b^n = C_{n_0}^n C_{b_0}^{n_0} C_b^{b_0}
Cbn=Cn0nCb0n0Cbb0
其中n0n_0n0和b0b_0b0系分别是与nnn和bbb系在t0t_0t0时刻重合的惯性系。这样Cn0nC_{n_0}^nCn0n和Cbb0C_b^{b_0}Cbb0就比较好确定,所以粗对准的工作就是确定Cb0n0C_{b_0}^{n_0}Cb0n0。而且因为Cb0n0C_{b_0}^{n_0}Cb0n0是两个惯性系之间的姿态阵,不存在晃动的问题,所以增加了抗干扰能力。
接下来就是建立两个惯性系之间的对应矢量关系:
G1n0=Cb0n0F~1b0G2n0=Cb0n0F~2b0
G_1^{n_0} = C_{b_0}^{n_0} \tilde F_1^{b_0}\\
G_2^{n_0} = C_{b_0}^{n_0} \tilde F_2^{b_0}\\
G1n0=Cb0n0F~1b0G2n0=Cb0n0F~2b0
其中:
F~1b0=∫0t1Cbb0f~sfbdtF~2b0=∫t1t2Cbb0f~sfbdtG1n0=−∫0t1gn0dtG2n0=−∫t1t2gn0dt
\tilde F_1^{b_0}= \int _0^{t_1} C_b^{b_0} \tilde f_{sf}^b dt\\
\tilde F_2^{b_0}= \int _{t_1}^{t_2} C_b^{b_0} \tilde f_{sf}^b dt\\
G_1^{n_0}= -\int _0^{t_1} g^{n_0} dt\\
G_2^{n_0}= -\int _{t_1}^{t_2} g^{n_0} dt\\
F~1b0=∫0t1Cbb0f~sfbdtF~2b0=∫t1t2Cbb0f~sfbdtG1n0=−∫0t1gn0dtG2n0=−∫t1t2gn0dt
可得:
C^b0n0=[G1n0∣G1n0∣G1n0×G2n0∣G1n0×G2n0∣G1n0×G2n0×G1n0∣G1n0×G2n0×G1n0∣][(F~1b0∣F~1b0∣)T(F~1b0×F~2b0∣F~1b0×F~2b0∣)T(F~1b0×F~2b0×F~1b0∣F~1b0×F~2b0×F~1b0∣)T]
\hat C_{b_0}^{n_0} =
\begin{bmatrix}
\frac{G_1^{n_0}}{|G_1^{n_0}|} &
\frac{G_1^{n_0} \times G_2^{n_0}}{|G_1^{n_0} \times G_2^{n_0}|} &
\frac{G_1^{n_0} \times G_2^{n_0} \times G_1^{n_0}}{|G_1^{n_0} \times G_2^{n_0} \times G_1^{n_0}|}
\end{bmatrix}
\begin{bmatrix}
(\frac{\tilde F_1^{b_0} }{|\tilde F_1^{b_0}|})^T\\
\\
(\frac{\tilde F_1^{b_0} \times \tilde F_2^{b_0}}{|\tilde F_1^{b_0} \times \tilde F_2^{b_0}|})^T\\
\\
(\frac{\tilde F_1^{b_0} \times \tilde F_2^{b_0} \times \tilde F_1^{b_0}}{|\tilde F_1^{b_0} \times \tilde F_2^{b_0} \times \tilde F_1^{b_0}|})^T\\
\end{bmatrix}
C^b0n0=[∣G1n0∣G1n0∣G1n0×G2n0∣G1n0×G2n0∣G1n0×G2n0×G1n0∣G1n0×G2n0×G1n0]⎣⎢⎢⎢⎢⎢⎢⎢⎢⎡(∣F~1b0∣F~1b0)T(∣F~1b0×F~2b0∣F~1b0×F~2b0)T(∣F~1b0×F~2b0×F~1b0∣F~1b0×F~2b0×F~1b0)T⎦⎥⎥⎥⎥⎥⎥⎥⎥⎤
最后:
C^bn=Cn0nC^b0n0Cbb0
\hat C_b^n = C_{n_0}^n \hat C_{b_0}^{n_0} C_b^{b_0}
C^bn=Cn0nC^b0n0Cbb0