首先摆放一下前面的求解结果:
(1)Kk=Pk/k−1HkT(HkPk/k−1HkT+Rk)−1
\tag{1}
K_k = P_{k/k-1} H_k^T(H_k P_{k/k-1} H_k^T + R_k)^{-1}
Kk=Pk/k−1HkT(HkPk/k−1HkT+Rk)−1(1) (2)Pk=(I−KkHk)Pk/k−1
\tag{2}
P_k = (I - K_k H_k ) P_{k/k-1}
Pk=(I−KkHk)Pk/k−1(2) Pk=(I−KkHk)Pk/k−1(I−KkHk)T+KkRkKkT
P_k = (I - K_kH_k) P_{k/k-1} (I - K_kH_k)^T + K_k R_k K_k^T\\
Pk=(I−KkHk)Pk/k−1(I−KkHk)T+KkRkKkT
公式(1)代入公式(2)展开的:
(3)Pk=Pk/k−1−Pk/k−1HkT(HkPk/k−1HkT+Rk)−1HkPk/k−1=Pk/k−1−Pk/k−1HkT(Rk+HkPk/k−1HkT)−1HkPk/k−1
\tag{3}
\begin{aligned}
P_k &= P_{k/k-1} - P_{k/k-1} H_k^T(H_k P_{k/k-1} H_k^T + R_k)^{-1} H_k P_{k/k-1} \\
\\
&= P_{k/k-1} - P_{k/k-1} H_k^T( R_k + H_k P_{k/k-1} H_k^T )^{-1} H_k P_{k/k-1} \\
\end{aligned}
Pk=Pk/k−1−Pk/k−1HkT(HkPk/k−1HkT+Rk)−1HkPk/k−1=Pk/k−1−Pk/k−1HkT(Rk+HkPk/k−1HkT)−1HkPk/k−1(3)
比较矩阵求逆引理:
(A+BCD)−1=A−1−A−1B(C−1+DA−1B)−1DA−1
(A+BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1}+DA^{-1}B)^{-1} DA^{-1}
(A+BCD)−1=A−1−A−1B(C−1+DA−1B)−1DA−1
可将公式(3)转换为:
(4)Pk=(Pk/k−1−1+HkTRk−1Hk)−1
\tag{4}
P_k = (P_{k/k-1}^{-1} + H_k^T R_k^{-1} H_k) ^{-1}
Pk=(Pk/k−1−1+HkTRk−1Hk)−1(4)
前面已求得:
Pk/k−1HkT=Kk(HkPk/k−1HkT+Rk)
P_{k/k-1} H_k^T = K_k(H_k P_{k/k-1} H_k^T + R_k)
Pk/k−1HkT=Kk(HkPk/k−1HkT+Rk)
两边转置:
HkPk/k−1=(HkPk/k−1HkT+Rk)KkT
H_k P_{k/k-1} = (H_k P_{k/k-1} H_k^T + R_k)K^T_k
HkPk/k−1=(HkPk/k−1HkT+Rk)KkT
将公式(2)并将上式代入可得:
Pk=Pk/k−1−Kk(HkPk/k−1HkT+Rk)KkT P_k = P_{k/k-1} - K_k (H_k P_{k/k-1} H_k^T + R_k)K^T_k Pk=Pk/k−1−Kk(HkPk/k−1HkT+Rk)KkT
根据矩阵求逆引理的方法构造公式(1):
(5)Kk=Pk/k−1HkT(HkPk/k−1HkT+Rk)−1=[(HkPk/k−1HkT+Rk)(HkT)−1Pk/k−1−1]−1=[Hk+Rk(HkT)−1Pk/k−1−1]−1=[Rk(HkT)−1(HkTRk−1Hk+Pk/k−1−1)]−1=(HkTRk−1Hk+Pk/k−1−1)−1HkTRk−1 \tag{5} \begin{aligned} K_k &= P_{k/k-1} H_k^T(H_k P_{k/k-1} H_k^T + R_k)^{-1}\\ \\ &= [(H_k P_{k/k-1} H_k^T + R_k)(H_k^T)^{-1} P_{k/k-1}^{-1}]^{-1}\\ \\ &= [H_k + R_k(H_k^T)^{-1} P_{k/k-1}^{-1}]^{-1}\\ \\ &= [R_k(H_k^T)^{-1}( H_k^T R_k^{-1} H_k + P_{k/k-1}^{-1})]^{-1}\\ \\ &= ( H_k^T R_k^{-1} H_k + P_{k/k-1}^{-1})^{-1}H_k^T R_k^{-1}\\ \end{aligned} Kk=Pk/k−1HkT(HkPk/k−1HkT+Rk)−1=[(HkPk/k−1HkT+Rk)(HkT)−1Pk/k−1−1]−1=[Hk+Rk(HkT)−1Pk/k−1−1]−1=[Rk(HkT)−1(HkTRk−1Hk+Pk/k−1−1)]−1=(HkTRk−1Hk+Pk/k−1−1)−1HkTRk−1(5)
将公式(4)代入公式(5):
Kk=PkHkTRk−1 K_k = P_k H_k^T R_k^{-1} Kk=PkHkTRk−1
总结一下等价形式,对于滤波增益:
Kk=Pk/k−1HkT(HkPk/k−1HkT+Rk)−1Kk=PkHkTRk−1
\begin{aligned}
K_k &= P_{k/k-1} H_k^T(H_k P_{k/k-1} H_k^T + R_k)^{-1}\\
\\
K_k &= P_k H_k^T R_k^{-1}
\end{aligned}
KkKk=Pk/k−1HkT(HkPk/k−1HkT+Rk)−1=PkHkTRk−1
对于协方差阵:
Pk=(I−KkHk)Pk/k−1Pk=Pk/k−1−Kk(HkPk/k−1HkT+Rk)KkTPk=(I−KkHk)Pk/k−1(I−KkHk)T+KkRkKkTPk=(Pk/k−1−1+HkTRk−1Hk)−1
\begin{aligned}
P_k &= (I - K_k H_k ) P_{k/k-1} \\
\\
P_k &= P_{k/k-1} - K_k (H_k P_{k/k-1} H_k^T + R_k)K^T_k\\
\\
P_k &= (I - K_kH_k) P_{k/k-1} (I - K_kH_k)^T + K_k R_k K_k^T\\
\\
P_k &= (P_{k/k-1}^{-1} + H_k^T R_k^{-1} H_k) ^{-1}\\
\end{aligned}
PkPkPkPk=(I−KkHk)Pk/k−1=Pk/k−1−Kk(HkPk/k−1HkT+Rk)KkT=(I−KkHk)Pk/k−1(I−KkHk)T+KkRkKkT=(Pk/k−1−1+HkTRk−1Hk)−1