hdu5833 Zhu and 772002 (高斯消元的简单应用):http://acm.hdu.edu.cn/showproblem.php?pid=5833
题面描述:
Zhu and 772002
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 520 Accepted Submission(s): 174
Problem Description
Zhu and 772002 are both good at math. One day, Zhu wants to test the ability of 772002, so he asks 772002 to solve a math problem.
But 772002 has a appointment with his girl friend. So 772002 gives this problem to you.
There are n numbers a1,a2,...,an . The value of the prime factors of each number does not exceed 2000 , you can choose at least one number and multiply them, then you can get a number b .
How many different ways of choices can make b is a perfect square number. The answer maybe too large, so you should output the answer modulo by 1000000007 .
But 772002 has a appointment with his girl friend. So 772002 gives this problem to you.
There are n numbers a1,a2,...,an . The value of the prime factors of each number does not exceed 2000 , you can choose at least one number and multiply them, then you can get a number b .
How many different ways of choices can make b is a perfect square number. The answer maybe too large, so you should output the answer modulo by 1000000007 .
Input
First line is a positive integer
T
, represents there are
T
test cases.
For each test case:
First line includes a number n(1≤n≤300) ,next line there are n numbers a1,a2,...,an,(1≤ai≤1018) .
For each test case:
First line includes a number n(1≤n≤300) ,next line there are n numbers a1,a2,...,an,(1≤ai≤1018) .
Output
For the i-th test case , first output Case #i: in a single line.
Then output the answer of i-th test case modulo by 1000000007 .
Then output the answer of i-th test case modulo by 1000000007 .
Sample Input
2 3 3 3 4 3 2 2 2
Sample Output
Case #1: 3 Case #2: 3
输入n个数,范围在10的18次方以内,将其质因数分解之后他们的质因子都在2000以内,从中选出1-多个,使得所选数的乘积为完全平方数,计算一共有多少种选法。
题目分析:
不超过2000的素因子,可以考虑每个数的唯一分解式,用01向量表示一个数,再用n个01变量xi来表示我们的选择,其中xi=1表示要选第i个数,xi=0表示不选它,则可以对每个素数的幂列出一个模2的方程。
代码实现如下:
#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string.h>
#include <math.h>
using namespace std;
const long long mod=1000000007;
long long equ,var;
long long a[330][330];
long long x[330];
long long free_x[330];
long long free_num;
int Gauss()
{
int max_r, col, k;
free_num = 0;
for(k = 0, col = 0; k < equ && col < var; k++, col++)
{
max_r = k;
for(int i = k+1 ; i < equ; i++)
if(abs(a[i][col]) > abs(a[max_r][col]))
max_r = i;
if(a[max_r][col] == 0)
{
k--;
free_x[free_num++] = col;
continue;
}
if(max_r != k)
{
for(int j = col; j < var+1; j++)
swap(a[k][j],a[max_r][j]);
}
for(int i = k+1; i < equ; i++)
if(a[i][col] != 0)
for(int j = col; j < var+1; j++)
a[i][j] ^= a[k][j];
}
for(int i = k; i < equ; i++)
if(a[i][col] != 0)
return -1;
if(k < var)return var-k;
for(int i = var-1; i >= 0; i--)
{
x[i] = a[i][var];
for(int j = i+1; j < var; j++)
x[i] ^= (a[i][j] && x[j]);
}
return 0;
}
const int MAXN = 2200;
long long prime[MAXN+1];
void getPrime()
{
memset(prime,0,sizeof(prime));
for(int i = 2; i <= MAXN; i++)
{
if(!prime[i])prime[++prime[0]] = i;
for(int j = 1; j <= prime[0] && prime[j] <= MAXN/i; j++)
{
prime[prime[j]*i] = 1;
if(i%prime[j] == 0)break;
}
}
}
long long quick_mod(long long a,long long b)
{
long long ans=1;
while(b)
{
if(b&1)
{
ans=(ans*a)%mod;
b--;
}
b/=2;
a=a*a%mod;
}
return ans;
}
long long data[330];
char str1[330],str2[330];
int main()
{
getPrime();
int T,m;
int casenum=1;
scanf("%d",&T);
while(T--)
{
scanf("%d",&m);
{
for(int i = 0; i < m; i++)
scanf("%lld",&data[i]);
int t=303;
equ = t;
var = m;
for(int i = 0; i < t; i++)
for(int j = 0; j < m; j++)
{
int cnt = 0;
while(data[j]%prime[i+1] == 0)
{
cnt++;
data[j] /= prime[i+1];
}
a[i][j] = (cnt&1);
}
for(int i = 0; i < t; i++)
a[i][m] = 0;
int ret = Gauss();
long long ansans=quick_mod(2,free_num);
ansans=(ansans-1)%mod;
printf("Case #%d:\n",casenum++);
printf("%lld\n",ansans);
}
}
return 0;
}