hdu5833 Zhu and 772002 (高斯消元的简单应用)

本文介绍了一道利用高斯消元算法解决的数学问题,题目要求计算给定数字集合中能组合成完全平方数的不同方式的数量。通过将问题转化为线性代数中的方程组求解,给出了详细的算法思路和C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hdu5833 Zhu and 772002 (高斯消元的简单应用):http://acm.hdu.edu.cn/showproblem.php?pid=5833

题面描述:

Zhu and 772002

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 520    Accepted Submission(s): 174


Problem Description
Zhu and 772002 are both good at math. One day, Zhu wants to test the ability of 772002, so he asks 772002 to solve a math problem. 

But 772002 has a appointment with his girl friend. So 772002 gives this problem to you.

There are  n  numbers  a1,a2,...,an . The value of the prime factors of each number does not exceed  2000 , you can choose at least one number and multiply them, then you can get a number  b .

How many different ways of choices can make  b  is a perfect square number. The answer maybe too large, so you should output the answer modulo by  1000000007 .
 

Input
First line is a positive integer  T  , represents there are  T  test cases.

For each test case:

First line includes a number  n(1n300) ,next line there are  n  numbers  a1,a2,...,an,(1ai1018) .
 

Output
For the i-th test case , first output Case #i: in a single line.

Then output the answer of i-th test case modulo by  1000000007 .
 

Sample Input
  
2 3 3 3 4 3 2 2 2
 

Sample Output
  
Case #1: 3 Case #2: 3
 

题目大意:

输入n个数,范围在10的18次方以内,将其质因数分解之后他们的质因子都在2000以内,从中选出1-多个,使得所选数的乘积为完全平方数,计算一共有多少种选法。


题目分析:

不超过2000的素因子,可以考虑每个数的唯一分解式,用01向量表示一个数,再用n个01变量xi来表示我们的选择,其中xi=1表示要选第i个数,xi=0表示不选它,则可以对每个素数的幂列出一个模2的方程。



代码实现如下:

#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string.h>
#include <math.h>

using namespace std;

const long long mod=1000000007;

long long equ,var;
long long a[330][330];
long long x[330];
long long free_x[330];
long long free_num;

int Gauss()
{
    int max_r, col, k;
    free_num = 0;
    for(k = 0, col = 0; k < equ && col < var; k++, col++)
    {
        max_r = k;
        for(int i = k+1 ; i < equ; i++)
            if(abs(a[i][col]) > abs(a[max_r][col]))
                max_r = i;
        if(a[max_r][col] == 0)
        {
            k--;
            free_x[free_num++] = col;
            continue;
        }
        if(max_r != k)
        {
            for(int j = col; j < var+1; j++)
                swap(a[k][j],a[max_r][j]);
        }
        for(int i = k+1; i < equ; i++)
            if(a[i][col] != 0)
                for(int j = col; j < var+1; j++)
                    a[i][j] ^= a[k][j];
    }
    for(int i = k; i < equ; i++)
        if(a[i][col] != 0)
            return -1;
    if(k < var)return var-k;
    for(int i = var-1; i >= 0; i--)
    {
        x[i] = a[i][var];
        for(int j = i+1; j < var; j++)
            x[i] ^= (a[i][j] && x[j]);
    }
    return 0;
}

const int MAXN = 2200;
long long prime[MAXN+1];
void getPrime()
{
    memset(prime,0,sizeof(prime));
    for(int i = 2; i <= MAXN; i++)
    {
        if(!prime[i])prime[++prime[0]] = i;
        for(int j = 1; j <= prime[0] && prime[j] <= MAXN/i; j++)
        {
            prime[prime[j]*i] = 1;
            if(i%prime[j] == 0)break;
        }
    }
}

long long quick_mod(long long a,long long b)
{
    long long ans=1;
    while(b)
    {
        if(b&1)
        {
            ans=(ans*a)%mod;
            b--;
        }
        b/=2;
        a=a*a%mod;
    }
    return ans;
}

long long data[330];
char str1[330],str2[330];

int main()
{
    getPrime();
    int T,m;
    int casenum=1;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&m);
        {
            for(int i = 0; i < m; i++)
                scanf("%lld",&data[i]);
            int t=303;
            equ = t;
            var = m;
            for(int i = 0; i < t; i++)
                for(int j = 0; j < m; j++)
                {
                    int cnt = 0;
                    while(data[j]%prime[i+1] == 0)
                    {
                        cnt++;
                        data[j] /= prime[i+1];
                    }
                    a[i][j] = (cnt&1);
                }
            for(int i = 0; i < t; i++)
                a[i][m] = 0;
            int ret = Gauss();
            long long ansans=quick_mod(2,free_num);
            ansans=(ansans-1)%mod;
            printf("Case #%d:\n",casenum++);
            printf("%lld\n",ansans);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值