每个数的质因子的大小不超过2000,2000以内质数大概300个。因为要选取若干数,使得他们乘起来是完全平方数,等价于把他们质因数的质数加起来,各质因数质数%2为0
考虑每个ai都是一个列向量,每个ai,j就是第i个数的第j个质因子的次数,那么要求的就是对于每一行都有∑0≤j<nai,j≡0 mod 2高斯消元搞一搞,数数自由元即可
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <sstream>
#include <set>
#include <vector>
#include <stack>
#define ALL(x) x.begin(), x.end()
#define INS(x) inserter(x, x,begin())
#define ll long long
#define CLR(x) memset(x, 0, sizeof x)
using namespace std;
const int inf = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const int maxn = 1e5 + 10;
const int maxv = 2e3 + 10;
const double eps = 1e-9;
int maxprime[maxv];
std::vector <int> primes;
int mp[311][311];
void init() {
for(int i = 2; i <= 2e3; i++) {
if(!maxprime[i]) {
primes.push_back(i);
for(int j = i; j <= 2e3; j += i)
maxprime[j] = i;
}
}
}
ll Pow(ll a, ll n) {
ll ret = 1;
while(n) {
if(n & 1) ret = ret * a % MOD;
a = a * a % MOD;
n >>= 1;
}
return ret;
}
void print(int n, int m) {
for(int i = 0; i < n; i++) {
for(int j = 0; j <= m; j++) {
printf("%d ", mp[i][j]);
}
puts("");
}
}
ll Gauss(int equ, int var) {
int row = 0, col = 0;
int Free = 0;
for(row = 0, col = 0; row < equ && col < var; row++, col++) {
int maxRow = row;
for(int i = row + 1; i < equ; i++) {
if(mp[i][col] > mp[maxRow][col]) maxRow = i;
}
if(!mp[maxRow][col]) {
Free++;
row--;
continue;
}
if(maxRow != row) {
for(int j = col; j <= var; j++) swap(mp[row][j], mp[maxRow][j]);
}
for(int i = row + 1; i < equ; i++) {
if(mp[i][col]) {
for(int j = col; j <= var; j++) {
mp[i][j] ^= mp[row][j];
}
}
}
}
return Pow(2, Free);
}
int main() {
#ifdef LOCAL
freopen("C:\\Users\\Administrator\\Desktop\\in.txt", "r", stdin);
#endif
init();
int cas = 0, T;
scanf("%d", &T);
while(T--) {
printf("Case #%d:\n", ++cas);
int n = 0, m;
scanf("%d", &m);
CLR(mp);
for(int j = 0; j < m; j++) {
ll x;
scanf("%lld", &x);
int i = 0;
for(i = 0; x != 1; i++) {
int cnt = 0;
while(x % primes[i] == 0) {
x /= primes[i];
cnt++;
}
mp[i][j] = cnt % 2;
}
n = max(n, i);
}
for(int i = 0; i < n; i++) {
mp[i][m] = 0;
}
printf("%lld\n", (Gauss(max(n, m), m) - 1 + MOD) % MOD);
}
return 0;
}