Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null || triangle.size() == 0) return 0;
int[] dp = new int[triangle.size()];
dp[0] = triangle.get(0).get(0);
for (int i = 1; i < triangle.size(); i++) {
List<Integer> list = triangle.get(i);
dp[i] = list.get(i)+dp[i-1];
for (int j = i-1; j > 0; j--) {
dp[j] = Math.min(dp[j], dp[j-1])+list.get(j);
}
dp[0] += list.get(0);
}
int min = dp[0];
for (int n : dp) {
min = Math.min(min, n);
}
return min;
}