HDU 6035 Colorful Tree(树形DP)

本文介绍了一种解决彩色树中所有路径颜色种类数量之和的算法问题。该问题涉及一棵包含n个节点的树,每个节点有特定的颜色,目标是计算所有不同路径上出现的不同颜色数目的总和。通过深度优先搜索(DFS)实现算法,优化计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Colorful Tree

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1903    Accepted Submission(s): 804


Problem Description
There is a tree with  n  nodes, each of which has a type of color represented by an integer, where the color of node  i  is  ci .

The path between each two different nodes is unique, of which we define the value as the number of different colors appearing in it.

Calculate the sum of values of all paths on the tree that has  n(n1)2  paths in total.
 

Input
The input contains multiple test cases.

For each test case, the first line contains one positive integers  n , indicating the number of node.  (2n200000)

Next line contains  n  integers where the  i -th integer represents  ci , the color of node  i (1cin)

Each of the next  n1  lines contains two positive integers  x,y   (1x,yn,xy) , meaning an edge between node  x  and node  y .

It is guaranteed that these edges form a tree.
 

Output
For each test case, output " Case # x y " in one line (without quotes), where  x  indicates the case number starting from  1  and  y  denotes the answer of corresponding case.
 

Sample Input
  
3 1 2 1 1 2 2 3 6 1 2 1 3 2 1 1 2 1 3 2 4 2 5 3 6
 

Sample Output
  
Case #1: 6 Case #2: 29
 

Source
 

http://blog.youkuaiyun.com/Bahuia/article/details/76141574

这篇讲的比较好。

#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define  LL long long
const LL N = 2e5+10;

struct node
{
    LL v,nxt;
}len[N<<1];
LL sum[N],size[N];
LL head[N],vis[N],col[N];
LL cnt;
LL lenn;
void add(LL u,LL v)
{
    lenn++;
    len[lenn].v=v;
    len[lenn].nxt=head[u];
    head[u]=lenn;
}
LL ans;
LL dfs(LL u,LL p)
{
    LL allson=0,pre;
    size[u]=1;
    for(LL i=head[u];i!=-1;i=len[i].nxt)
    {
        LL v=len[i].v;
        if(v==p) continue;
        pre=sum[col[u]];
        size[u]+=dfs(v,u);
        LL add=sum[col[u]]-pre;
        LL temp=(size[v]-add)*(size[v]-add-1LL)/2LL;
        ans+=temp;
        allson+=size[v]-add;
    }
    sum[col[u]]+=allson+1;
    return size[u];
}
int main()
{
    LL n;
    LL k=0;
    while(~scanf("%lld",&n))
    {
        cnt=0;
        lenn=0;
        ans=0;
        memset(head,-1,sizeof head);
        memset(vis,0,sizeof vis);
        memset(len,0,sizeof len);
        memset(sum,0,sizeof sum);
        for(LL i=1;i<=n;i++)
        {
            scanf("%lld",&col[i]);
            if(!vis[col[i]])
            {
                cnt++;
                vis[col[i]]=1;
            }
        }
        for(LL i=1;i<=n-1;i++)
        {
            LL u,v;
            scanf("%lld %lld",&u,&v);
            add(u,v);
            add(v,u);
        }
        printf("Case #%lld: ",++k);
        if(cnt==1) //只有一种情况
        {
            printf("%lld\n",(LL)n*(n-1LL)/2LL);
        }
        else
        {
            dfs(1,-1);
            for(LL i=1;i<=n;i++)
            {
                if(!vis[i]) continue;
                ans+=(LL)(n-sum[i])*(n-sum[i]-1LL)/2LL;
            }
            printf("%lld\n",(LL)cnt*n*(n-1LL)/2LL-ans);
        }
    }
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值