文章目录
一、齐次方程
如果一阶微分方程可化成
d
y
d
x
=
φ
(
y
x
)
(1)
\cfrac{\mathrm{d}y}{\mathrm{d}x} = \varphi \left( \cfrac{y}{x} \right) \tag{1}
dxdy=φ(xy)(1)
的形式,那么就称这方程为齐次方程。
在齐次方程
d
y
d
x
=
φ
(
y
x
)
\cfrac{\mathrm{d}y}{\mathrm{d}x} = \varphi \left( \cfrac{y}{x} \right)
dxdy=φ(xy)
中,引入新的未知函数
u
=
y
x
(2)
u = \cfrac{y}{x} \tag{2}
u=xy(2)
就可以把它化为可分离变量的方程。因为由
(
2
)
(2)
(2) 有
y
=
u
x
,
d
y
d
x
=
u
+
x
d
u
d
x
y = ux, \cfrac{\mathrm{d}y}{\mathrm{d}x} = u + x \cfrac{\mathrm{d}u}{\mathrm{d}x}
y=ux,dxdy=u+xdxdu
代入方程
(
1
)
(1)
(1) 便得方程
u
+
x
d
u
d
x
=
φ
(
u
)
u + x \cfrac{\mathrm{d}u}{\mathrm{d}x} = \varphi(u)
u+xdxdu=φ(u)
即
x
d
u
d
x
=
φ
(
u
)
−
u
x \cfrac{\mathrm{d}u}{\mathrm{d}x} = \varphi(u) - u
xdxdu=φ(u)−u
分离变量,得
d
u
φ
(
u
)
−
u
=
d
x
x
\cfrac{\mathrm{d}u}{\varphi(u) - u} = \cfrac{\mathrm{d}x}{x}
φ(u)−udu=xdx
两端积分,得
∫
d
u
φ
(
u
)
−
u
=
∫
d
x
x
\int \cfrac{\mathrm{d}u}{\varphi(u) - u} = \int \cfrac{\mathrm{d}x}{x}
∫φ(u)−udu=∫xdx
求出积分后,再以
y
x
\cfrac{y}{x}
xy 代替
u
u
u ,便得所给齐次方程的通解。
例1 解方程
y
2
+
x
2
d
y
d
x
=
x
y
d
y
d
x
y^2 + x^2 \cfrac{\mathrm{d}y}{\mathrm{d}x} = xy \cfrac{\mathrm{d}y}{\mathrm{d}x}
y2+x2dxdy=xydxdy .
解:原方程可写成
d
y
d
x
=
y
2
x
y
−
x
2
=
(
y
x
)
2
y
x
−
1
,
\cfrac{\mathrm{d}y}{\mathrm{d}x} = \cfrac{y^2}{xy - x^2} = \cfrac{\left( \cfrac{y}{x} \right)^2}{\cfrac{y}{x} -1},
dxdy=xy−x2y2=xy−1(xy)2,
因此是齐次方程。令
y
x
=
u
\cfrac{y}{x} = u
xy=u,则
y
=
u
x
,
d
y
d
x
=
u
+
x
d
u
d
x
y = ux, \cfrac{\mathrm{d}y}{\mathrm{d}x} = u + x \cfrac{\mathrm{d}u}{\mathrm{d}x}
y=ux,dxdy=u+xdxdu
于是原方程变为
u
+
x
d
u
d
x
=
u
2
u
−
1
u + x \cfrac{\mathrm{d}u}{\mathrm{d}x} = \cfrac{u^2}{u - 1}
u+xdxdu=u−1u2
即
x
d
u
d
x
=
u
u
−
1
x \cfrac{\mathrm{d}u}{\mathrm{d}x} = \cfrac{u}{u - 1}
xdxdu=u−1u
分离变量,得
(
1
−
1
u
)
d
u
=
d
x
x
\left( 1 - \cfrac{1}{u} \right) \mathrm{d}u = \cfrac{\mathrm{d}x}{x}
(1−u1)du=xdx
两端积分,得
u
−
ln
∣
u
∣
+
C
1
=
ln
∣
x
∣
u - \ln |u| + C_1 = \ln |x|
u−ln∣u∣+C1=ln∣x∣
或写为
ln
∣
x
u
∣
=
u
+
C
1
\ln |xu| = u + C_1
ln∣xu∣=u+C1
以
y
x
\cfrac{y}{x}
xy 代上式中的
u
u
u ,便得所给方程的通解为
ln
∣
y
∣
=
y
x
+
C
1
或
y
=
C
e
y
x
(
C
=
±
e
C
1
)
.
\ln |y| = \cfrac{y}{x} + C_1 \quad 或 \quad y = C \mathrm{e}^{\frac{y}{x}} (C = \pm \mathrm{e}^{C_1}).
ln∣y∣=xy+C1或y=Cexy(C=±eC1).
*二、可化为齐次的方程
方程
d
y
d
x
=
a
x
+
b
y
+
c
a
1
x
+
b
1
y
+
c
1
(3)
\cfrac{\mathrm{d}y}{\mathrm{d}x} = \cfrac{ax + by + c}{a_1 x + b_1 y + c_1} \tag{3}
dxdy=a1x+b1y+c1ax+by+c(3)
当
c
=
c
1
=
0
c = c_1 = 0
c=c1=0 时是齐次的,否则不是齐次的。在非齐次的情形,可用下列变换把它化为齐次方程:令
x
=
X
+
h
,
y
=
Y
+
k
,
x = X + h, \quad y = Y + k,
x=X+h,y=Y+k,
其中
h
h
h 及
k
k
k 是待定的常数。于是
d
x
=
d
X
,
d
y
=
d
Y
,
\mathrm{d}x = \mathrm{d}X, \quad \mathrm{d}y = \mathrm{d}Y,
dx=dX,dy=dY,
从而方程
(
3
)
(3)
(3) 成为
d
Y
d
X
=
a
X
+
b
Y
+
a
h
+
b
k
+
c
a
1
X
+
b
1
Y
+
a
1
h
+
b
1
k
+
c
1
\cfrac{\mathrm{d}Y}{\mathrm{d}X} = \cfrac{aX + bY + ah + bk + c}{a_1X + b_1Y + a_1h + b_1k + c_1}
dXdY=a1X+b1Y+a1h+b1k+c1aX+bY+ah+bk+c
如果方程组
{
a
h
+
b
k
+
c
=
0
a
1
h
+
b
1
k
+
c
1
=
0
\begin{equation*} \begin{cases} ah + bk + c = 0 \\ a_1h + b_1k + c_1 = 0 \end{cases} \end{equation*}
{ah+bk+c=0a1h+b1k+c1=0
的系数行列式
∣
a
b
a
1
b
1
∣
≠
0
\left|\begin {array}{c} a&b \\ a_1&b_1 \end{array}\right| \neq 0
aa1bb1
=0,即
a
1
a
≠
b
1
b
\cfrac{a_1}{a} \neq \cfrac{b_1}{b}
aa1=bb1 ,那么可以定出
h
h
h 及
k
k
k 使它们满足上述方程组。这样,方程
(
3
)
(3)
(3) 便化为齐次方程
d
Y
d
X
=
a
X
+
b
Y
a
1
X
+
b
1
Y
.
\cfrac{\mathrm{d}Y}{\mathrm{d}X} = \cfrac{aX + bY}{a_1X + b_1Y} .
dXdY=a1X+b1YaX+bY.
求出这齐次方程的通解后,在通解中以
x
−
h
x - h
x−h 代
X
X
X ,
y
−
k
y - k
y−k 代
Y
Y
Y ,,便得方程
(
3
)
(3)
(3) 的通解。
当
a
1
a
=
b
1
b
\cfrac{a_1}{a} = \cfrac{b_1}{b}
aa1=bb1 时,
h
h
h 及
k
k
k 无法求得,因此上述方法不能应用。但这是令
a
1
a
=
b
1
b
=
λ
\cfrac{a_1}{a} = \cfrac{b_1}{b} = \lambda
aa1=bb1=λ ,从而方程
(
3
)
(3)
(3) 可写成
d
y
d
x
=
a
x
+
b
y
+
c
λ
(
a
x
+
b
y
)
+
c
1
.
\cfrac{\mathrm{d}y}{\mathrm{d}x} = \cfrac{ax + by + c}{\lambda (ax + by) + c_1} .
dxdy=λ(ax+by)+c1ax+by+c.
引入新变量
v
=
a
x
+
b
y
v = ax + by
v=ax+by,则
d
v
d
x
=
a
+
b
d
y
d
x
或
d
y
d
x
=
1
b
(
d
v
d
x
−
a
)
.
\cfrac{\mathrm{d}v}{\mathrm{d}x} = a + b \cfrac{\mathrm{d}y}{\mathrm{d}x} \quad 或 \quad \cfrac{\mathrm{d}y}{\mathrm{d}x} = \cfrac{1}{b} \left( \cfrac{\mathrm{d}v}{\mathrm{d}x} - a \right) .
dxdv=a+bdxdy或dxdy=b1(dxdv−a).
于是方程
(
3
)
(3)
(3) 称为
1
b
(
d
v
d
x
−
a
)
=
v
+
c
λ
v
+
c
1
,
\cfrac{1}{b} \left( \cfrac{\mathrm{d}v}{\mathrm{d}x} - a \right) = \cfrac{v + c}{\lambda v + c_1} ,
b1(dxdv−a)=λv+c1v+c,
这是可分离变量的方程。
以上介绍的方法可以应用于更一般的方程
d
y
d
x
=
f
(
a
x
+
b
y
+
c
a
1
x
+
b
1
y
+
c
1
)
\cfrac{\mathrm{d}y}{\mathrm{d}x} = f \left( \cfrac{ax + by + c}{a_1x + b_1y + c_1} \right)
dxdy=f(a1x+b1y+c1ax+by+c)
例2 解方程
(
2
x
+
y
−
4
)
d
x
+
(
x
+
y
−
1
)
d
y
=
0
(2x + y - 4) \mathrm{d}x + (x + y - 1)\mathrm{d}y = 0
(2x+y−4)dx+(x+y−1)dy=0 .
解:令
x
=
X
+
h
,
y
=
Y
+
k
x = X + h, y = Y + k
x=X+h,y=Y+k ,则
d
x
=
d
X
,
d
y
=
d
Y
\mathrm{d}x = \mathrm{d}X, \mathrm{d}y = \mathrm{d}Y
dx=dX,dy=dY ,代入原方程得
(
2
X
+
Y
+
2
h
+
k
−
4
)
d
X
+
(
X
+
Y
+
h
+
k
−
1
)
d
Y
=
0
(2X + Y + 2h + k - 4)\mathrm{d}X + (X + Y + h + k - 1)\mathrm{d}Y = 0
(2X+Y+2h+k−4)dX+(X+Y+h+k−1)dY=0
解方程组
{
2
h
+
k
−
4
=
0
h
+
k
−
1
=
0
\begin{equation*} \begin{cases} 2h + k - 4 = 0 \\ h + k - 1 = 0 \end{cases} \end{equation*}
{2h+k−4=0h+k−1=0
得
h
=
3
,
k
=
−
2
h = 3, k = -2
h=3,k=−2 .令
x
=
X
+
3
,
y
=
Y
−
2
x = X + 3, y = Y - 2
x=X+3,y=Y−2,原方程成为
(
2
X
+
Y
)
d
X
+
(
X
+
Y
)
d
Y
=
0
(2X + Y)\mathrm{d}X + (X + Y)\mathrm{d}Y = 0
(2X+Y)dX+(X+Y)dY=0
或
d
Y
d
X
=
−
2
X
+
Y
X
+
Y
=
−
2
+
Y
X
1
+
Y
X
,
\cfrac{\mathrm{d}Y}{\mathrm{d}X} = - \cfrac{2X + Y}{X + Y} = - \cfrac{2 + \cfrac{Y}{X}}{1 + \cfrac{Y}{X}} ,
dXdY=−X+Y2X+Y=−1+XY2+XY,
这是齐次方程。
令
Y
X
=
u
\cfrac{Y}{X} = u
XY=u ,则
Y
=
X
u
,
d
Y
d
X
=
u
+
X
d
u
d
X
Y = Xu, \cfrac{\mathrm{d}Y}{\mathrm{d}X} = u + X \cfrac{\mathrm{d}u}{\mathrm{d}X}
Y=Xu,dXdY=u+XdXdu ,于是方程变为
u
+
X
d
u
d
X
=
−
2
+
u
1
+
u
,
u + X \cfrac{\mathrm{d}u}{\mathrm{d}X} = - \cfrac{2 + u}{1 + u} ,
u+XdXdu=−1+u2+u,
或
X
d
u
d
X
=
−
2
+
2
u
+
u
2
1
+
u
.
X \cfrac{\mathrm{d}u}{\mathrm{d}X} = - \cfrac{2 + 2u + u^2}{1 + u} .
XdXdu=−1+u2+2u+u2.
分离变量得
d
X
X
=
−
u
+
1
2
+
2
u
+
u
2
d
u
.
\cfrac{\mathrm{d}X}{X} = - \cfrac{u + 1}{2 + 2u + u^2} \mathrm{d}u .
XdX=−2+2u+u2u+1du.
积分得
ln
C
1
−
1
2
ln
(
u
2
+
2
u
+
2
)
=
ln
∣
X
∣
,
\ln C_1 - \cfrac{1}{2} \ln{(u^2 + 2u + 2)} = \ln |X| ,
lnC1−21ln(u2+2u+2)=ln∣X∣,
于是
C
1
u
2
+
2
u
+
2
=
∣
X
∣
\cfrac{C_1}{\sqrt{u^2 + 2u + 2}} = |X|
u2+2u+2C1=∣X∣
或
C
2
=
X
2
(
u
2
+
2
u
+
2
)
(
C
2
=
C
1
2
)
,
C_2 = X^2 (u^2 + 2u + 2) \quad (C_2 = C_1^2) ,
C2=X2(u2+2u+2)(C2=C12),
即
Y
2
+
2
X
Y
+
2
X
2
=
C
2
.
Y^2 + 2XY + 2X^2 = C_2 .
Y2+2XY+2X2=C2.
以
X
=
x
−
3
,
Y
=
y
+
2
X = x - 3, Y = y + 2
X=x−3,Y=y+2 代入上式并化简,得
2
x
2
+
2
x
y
+
y
2
−
8
x
−
2
y
=
C
(
C
=
C
2
−
10
)
.
2x^2 + 2xy + y^2 - 8x - 2y = C \quad (C = C_2 - 10).
2x2+2xy+y2−8x−2y=C(C=C2−10).
原文链接:高等数学 7.3 齐次方程