一、比较不同位深度BMP文件
用图画板或其他图像编辑软件(Photoshop/GIMP、cximage、IrfanView等)打开一个彩色图像文件,将其分别保存为 32位、16位彩色和256色、16色、单色的位图(BMP)文件,对比其文件大小,并计算分析这些图片在内存中的存储容量是多少?当保存为BMP文件时,将用文件头来记录图像的属性,请问:BMP文件头是多大?是什么格式?上述5个类型的BMP的文件头内容有什么差异?
- 准备一张图片
位图文件头(BITMAPFILEHEADER)
位图文件头分4部分,共14字节:
名称 | 占用空间 | 内容 | 实际数据 |
---|---|---|---|
bfType | 2字节 | 标识,就是“BM”二字 | BM |
bfSize | 4字节 | 整个BMP文件的大小 | 0x000C0036(786486) |
bfReserved1/2 | 4字节 | 保留字,没用 | 0 |
bfOffBits | 4字节 | 偏移数,即 位图文件头+位图信息头+调色板 的大小 |
- 首先是32位图img32.bmp
信息显示图片大小为189KB,位图大小计算:(分辨率)220×220×32/8/1024=189KB,这是不包含文件头信息的大小。
使用UltraEdit打开图片,查看文件头信息:
0x0002F478->193656
- 16位彩色图img12w.bmp
信息显示图片大小为94.5kb,位图大小计算:220×220×16/8/1024=94.5KB,这是不包含文件头信息的大小。
使用UltraEdit打开图片,查看文件头信息:
0x00017A58->96856
- 256色位图img256.bmp
信息显示图片大小为48.3KB,位图大小计算:220×220×8/8/1024=48.3KB,这是不包含文件头信息的大小。
使用UltraEdit打开图片,查看文件头信息:
- 16色位图img16.bmp
信息显示图片大小为24.1KB,位图大小计算:220×220×4/8/1024=24.1KB,这是不包含文件头信息的大小。
使用UltraEdit打开图片,查看文件头信息:
- 单色位图img1.bmp
信息显示图片大小为6.07KB,位图大小计算:220×220×1/8/1024=6.07KB,这是不包含文件头信息的大小。
使用UltraEdit打开图片,查看文件头信息:
二、不同图片格式的压缩比
比较大小:
原图PNG大小为89.6字节
BMP大小:768 字节,压缩比:-857%
JPG大小:75 字节,压缩比:83%
GIF大小:126 字节,压缩比:140%
也不知道为什么转换成不同格式是
三、用奇异值分解(SVD)进行特征值提取(降维)处理;
- 代码
import numpy as np
import os
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib as mpl
from pprint import pprint
def restore1(sigma, u, v, K): # 奇异值、左特征向量、右特征向量
m = len(u)
n = len(v[0])
a = np.zeros((m, n))
for k in range(K):
uk = u[:, k].reshape(m, 1)
vk = v[k].reshape(1, n)
a += sigma[k] * np.dot(uk, vk)
a[a < 0] = 0
a[a > 255] = 255
# a = a.clip(0, 255)
return np.rint(a).astype('uint8')
def restore2(sigma, u, v, K): # 奇异值、左特征向量、右特征向量
m = len(u)
n = len(v[0])
a = np.zeros((m, n))
for k in range(K+1):
for i in range(m):
a[i] += sigma[k] * u[i][k] * v[k]
a[a < 0] = 0
a[a > 255] = 255
return np.rint(a).astype('uint8')
if __name__ == "__main__":
A = Image.open("./pic/lean.png", 'r')
print(A)
output_path = r'./pic/SVD_Output'
if not os.path.exists(output_path):
os.mkdir(output_path)
a = np.array(A)
print(a.shape)
K = 50
u_r, sigma_r, v_r = np.linalg.svd(a[:, :, 0])
u_g, sigma_g, v_g = np.linalg.svd(a[:, :, 1])
u_b, sigma_b, v_b = np.linalg.svd(a[:, :, 2])
plt.figure(figsize=(11, 9), facecolor='w')
mpl.rcParams['font.sans-serif'] = ['simHei']
mpl.rcParams['axes.unicode_minus'] = False
for k in range(1, K+1):
print(k)
R = restore1(sigma_r, u_r, v_r, k)
G = restore1(sigma_g, u_g, v_g, k)
B = restore1(sigma_b, u_b, v_b, k)
I = np.stack((R, G, B), axis=2)
Image.fromarray(I).save('%s\\svd_%d.png' % (output_path, k))
if k <= 12:
plt.subplot(3, 4, k)
plt.imshow(I)
plt.axis('off')
plt.title('奇异值个数:%d' % k)
plt.suptitle('SVD与图像分解', fontsize=20)
plt.tight_layout()
# plt.subplots_adjust(top=0.9)
plt.show()
- 部分截图:
四、检测图像中硬币、细胞的个数。
代码
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
项目主题:硬币检测和计数的设计与实现
"""
import cv2
import numpy as np
def stackImages(scale, imgArray):
"""
将多张图像压入同一个窗口显示
:param scale:float类型,输出图像显示百分比,控制缩放比例,0.5=图像分辨率缩小一半
:param imgArray:元组嵌套列表,需要排列的图像矩阵
:return:输出图像
"""
rows = len(imgArray)
cols = len(imgArray[0])
rowsAvailable = isinstance(imgArray[0], list)
width = imgArray[0][0].shape[1]
height = imgArray[0][0].shape[0]
if rowsAvailable:
for x in range(0, rows):
for y in range(0, cols):
if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:
imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
else:
imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]),
None, scale, scale)
if len(imgArray[x][y].shape) == 2: imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)
imageBlank = np.zeros((height, width, 3), np.uint8)
hor = [imageBlank] * rows
hor_con = [imageBlank] * rows
for x in range(0, rows):
hor[x] = np.hstack(imgArray[x])
ver = np.vstack(hor)
else:
for x in range(0, rows):
if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
else:
imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale)
if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
hor = np.hstack(imgArray)
ver = hor
return ver
'1. 初始操作'
src = cv2.imread("./pic/coin.png")
img = src.copy()
'2. 获得形态学变换的【结构元】——ELLIPSE=椭圆形 RECT=矩形 CROSS=交叉形'
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
'3. 腐蚀——erode()参数含义:1)原图 2)结构元 iterations=次数'
er = cv2.erode(img, kernel, iterations=1)
'4. 膨胀——dilate()参数含义:1)原图 3)结构元 iterations=次数'
di = cv2.dilate(er, kernel, iterations=5)
'5. 图像预处理——灰度化'
gray = cv2.cvtColor(di, cv2.COLOR_BGR2GRAY)
'6. 图像预处理——二值化'
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
'7. 图像预处理——消除特有噪声(形态学变换)'
dilate = cv2.morphologyEx(thresh, cv2.MORPH_DILATE, kernel, iterations=2)
opening = cv2.morphologyEx(dilate, cv2.MORPH_CLOSE, kernel, iterations=3)
'根据距离变换的性质,经过简单的运算,即可用于细化字符的轮廓和查找物体质心(中心)。'
'5. 寻找前景区域——分离连接物体distanceTranform()参数含义:1)二值图像 2)距离变换类型 3)距离变换的掩膜模板'
# DIST_L2:简单欧几里得距离 Δ = sqrt((x1 - x2)² + (y1 - y2)²)
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 3)
'6. 找到未知区域'
ret, sure_fg = cv2.threshold(dist_transform, 0.5 * dist_transform.max(), 255, 0)
print(ret)
sure_fg = np.uint8(sure_fg)
'7. 找到硬币中心(轮廓查找)findContours()参数含义:1)8位图像 2)轮廓查找模式 3)查找近似方法'
contours, hierarchy = cv2.findContours(sure_fg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2:]
'8. 绘制硬币中心(轮廓绘制)drawContours()参数含义:1)原图 2)轮廓点坐标 3)轮廓索引 4)线条颜色 5)线条粗细'
cv2.drawContours(img, contours, -1, (0, 0, 255), 3)
'9. 完成显示'
'''
*知识点回顾:
putText()参数含义:1)图像 2)需显示的文本 3)坐标 4)文本字体 5)文本尺寸百分比 6)文本颜色 7)文本粗细
'''
cv2.putText(img, "count:{}".format(len(contours)), (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 3)
cv2.putText(src, "srcImg", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 3)
cv2.putText(gray, "gray", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), 3)
cv2.putText(thresh, "thresh", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), 3)
cv2.putText(opening, "open", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), 3)
cv2.putText(sure_fg, "fg", (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), 3)
imgStack = stackImages(0.7, ([src, gray, thresh], [opening, sure_fg, img]))
cv2.imshow("imgStack", imgStack)
cv2.waitKey(0)
细胞检测上同,不再重复
五、图片中的条形码检测与识别
代码
import cv2
import numpy as np
import imutils
from pyzbar import pyzbar
def stackImages(scale, imgArray):
"""
将多张图像压入同一个窗口显示
:param scale:float类型,输出图像显示百分比,控制缩放比例,0.5=图像分辨率缩小一半
:param imgArray:元组嵌套列表,需要排列的图像矩阵
:return:输出图像
"""
rows = len(imgArray)
cols = len(imgArray[0])
rowsAvailable = isinstance(imgArray[0], list)
width = imgArray[0][0].shape[1]
height = imgArray[0][0].shape[0]
if rowsAvailable:
for x in range(0, rows):
for y in range(0, cols):
if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:
imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
else:
imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]),
None, scale, scale)
if len(imgArray[x][y].shape) == 2: imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)
imageBlank = np.zeros((height, width, 3), np.uint8)
hor = [imageBlank] * rows
hor_con = [imageBlank] * rows
for x in range(0, rows):
hor[x] = np.hstack(imgArray[x])
ver = np.vstack(hor)
else:
for x in range(0, rows):
if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
else:
imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale)
if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
hor = np.hstack(imgArray)
ver = hor
return ver
#读取图片
src = cv2.imread("./pic/tiaoma.png")
img = src.copy()
#灰度
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#高斯滤波
GSblurred = cv2.GaussianBlur(gray, (5, 5), 1)
#Sobel算子
sobel_x = cv2.Sobel(GSblurred, cv2.CV_64F, 1, 0, ksize=3)
sobel_y = cv2.Sobel(GSblurred, cv2.CV_64F, 0, 1, ksize=3)
sobel_x = cv2.convertScaleAbs(sobel_x)
sobel_y = cv2.convertScaleAbs(sobel_y)
sobel = cv2.addWeighted(sobel_x, 0.5, sobel_y, 0.5, 0)
#均值滤波,消除高频噪声 (8*8)像素块
blurred = cv2.blur(sobel, (5, 5))
#二值化
ret, thresh = cv2.threshold(blurred, 127, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
#闭运算
kernel = np.ones((100, 100), int)
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
#开运算
kernel = np.ones((200, 200), int)
opening = cv2.morphologyEx(closed, cv2.MORPH_OPEN, kernel)
#绘制条形码区域
contours = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
c = sorted(contours, key = cv2.contourArea, reverse = True)[0]
rect = cv2.minAreaRect(c)
box = cv2.cv.BoxPoints(rect) if imutils.is_cv2() else cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(img, [box], -1, (0,255,0), 20)
#显示图片信息
cv2.putText(img, "results", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 10.0, (255, 0, 0), 30)
cv2.putText(gray, "gray", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 10.0, (255, 0, 0), 30)
cv2.putText(GSblurred, "GSblurred",(200, 200), cv2.FONT_HERSHEY_SIMPLEX, 10.0, (255, 0, 0), 30)
cv2.putText(sobel, "Sobel", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 10.0, (255, 0, 0), 30)
cv2.putText(blurred, "blur", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 10.0, (255, 0, 0), 30)
cv2.putText(thresh, "thresh", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 10.0, (255, 0, 0), 30)
cv2.putText(closed, "close", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 10.0, (255, 0, 0), 30)
cv2.putText(opening, "open", (200, 200), cv2.FONT_HERSHEY_SIMPLEX, 10.0, (255, 0, 0), 30)
#输出条形码
barcodes = pyzbar.decode(src)
for barcode in barcodes:
barcodeData = barcode.data.decode("utf-8")
cv2.putText(img, barcodeData, (25, 600), cv2.FONT_HERSHEY_SIMPLEX, 5.0, (0, 255, 0), 30)
#显示所有图片
imgStack = stackImages(0.1, ([gray, GSblurred,sobel,blurred],[thresh,closed,opening,img]))
cv2.imshow("imgStack", imgStack)
cv2.waitKey(0)
结果:
六、参考
https://blog.youkuaiyun.com/djj199301111/article/details/107616015