
欢迎阅读“MongoDB 和 AI 赋能行业应用”系列的第二篇。
本系列重点介绍 AI 应用于不同行业的关键用例,涵盖制造业和汽车行业、金融服务、零售、电信和媒体、保险以及医疗保健行业。
电信行业的经营环境以利润空间狭小为特点,尤其是在差异化极小的商品化通信和连接服务领域。由于语音、数据和互联网接入等服务大体同质化,电信公司需要差异化和多样化的收入流来创造价值,并在市场中脱颖而出。
随着数字原生企业以灵活创新的方式颠覆传统商业模式,老牌公司不仅要相互竞争,还要与新公司竞争,以提供更好的客户体验,适应不断变化的消费者需求。
如今人们越来越期待更加高级的交互方式,电信运营商为了保持蓬勃发展,必须优先考虑其运营支持系统(OSS)和业务支持系统(BSS)的成本效率,提高客户服务标准,并增强整体客户体验,以确保市场份额并获得竞争优势。不仅是电信运营商,媒体出版商也必须通过自动化来简化运营,同时加强与读者的互动,使读者愿意为个性化的相关内容付费。
服务保障
电信运营商需要以最佳质量和性能水平提供网络服务,以满足客户期望和服务水平协议。服务保证的主要方面包括性能监控、服务质量(QoS)管理和预测分析,以预测潜在的服务降级或网络故障。随着电信网络的复杂性不断增加,客户对高质量、始终在线服务的期望也越来越高,这就为服务保证设定了新的标准,要求企业大力投资能够自动优化这些流程并保持竞争优势的解决方案。
人工智能(AI)通过几个关键能力彻底改变了服务保障:
●机器学习(ML)可以作为预测性维护的有力基础,分析模式并预测网络故障,从而实现先发制人的维护,大幅减少停机时间;
●AI 技术可以通过复杂的网络系统进行筛选,准确找出问题的根本原因,提高故障排除工作的效率;
●AI 技术还可以通过网络优化、分析日志数据以识别改进机会,提高效率,从而降低

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



