一、简介

1 Hopfield神经网络【TSP问题】基于hopfield神经网络求解TSP问题matlab_matlab
2 离散Hopfield网络

3 连续Hopfield网络


CHNN用非线性微分方程描述,网络的稳定性通过构造其能量函数(又称李雅谱诺夫函数),并用李雅谱诺夫第二稳定性定理进行判断。
说明:
(1)李雅谱诺夫函数并不唯一;
(2)若找不到网络的李雅谱诺夫函数,不能证明网络不稳定;
(3)目前没有统一的找李雅谱诺夫函数的方法;
(4)用能量函数的方法研究网络的稳定性,在数学上欠严谨。
如果把一个最优化问题的目标函数转换成网络的能量函数,把问题的变量对应于网络的状态,那么Hopfield神经网络就能够用于解决优化组合问题。
应用Hopfield神经网络来解决优化计算问题的一般步骤为:
(1)分析问题:网络输出与问题的解相对应;
(2)构造网络能量函数:使其最小值对应问题最佳解;
(3)设计网络结构:由能量函数和网络稳定条件设计网络参数,得到动力学方程;
(4)MATLAB软件模拟。

clear;
 
CityNum=10;
[dislist,Clist]=tsp(CityNum);
 
A=500;
B=500;
C=200;
D=500;
arf=1;
miu0=0.02;
lan=0.00001;
EndNum=1000;
 
y=zeros(CityNum,CityNum);
for i=1:CityNum
    y(i,i)=1;
end
z=-miu0/2*log(9)*ones(CityNum,CityNum);
delu=0.1*miu0*rand(CityNum,CityNum);
 
figure(1);
for k=1:EndNum
    z=z+lan*delu;
    for u=1:CityNum
        for i=1:CityNum
            y(u,i)=1/(1+exp(-2*z(u,i)/miu0));
        end
    end
    for u=1:CityNum
        for i=1:CityNum
            A1=0;
            B1=0;
            for aa=1:CityNum
                A1=A1+y(u,aa);
                B1=B1+y(aa,i);
            end
            A1=A1-y(u,i);
            B1=B1-y(u,i);
            C1=0;
            for aa=1:CityNum
                for bb=1:CityNum
                    C1=C1+y(aa,bb);
                end
            end
            C1=C1-CityNum;
            D1=0;
            for x=1:CityNum
                if x~=u
                    if i==1
                        D1=D1+dislist(u,x)*(y(x,2)+y(x,CityNum));
                    elseif i==CityNum
                        D1=D1+dislist(u,x)*(y(x,1)+y(x,CityNum-1));
                    else
                        D1=D1+dislist(u,x)*(y(x,i+1)+y(x,i-1));
                    end
                end
            end
            delu(u,i)=-z(u,i)*arf-A*A1-B*B1-C*C1-D*D1;
        end
    end
function [DLn,cityn]=tsp(n)
 
if n==10
    city10=[0.4 0.4439;0.2439 0.1463;0.1707 0.2293;0.2293 0.761;0.5171 0.9414;
        0.8732 0.6536;0.6878 0.5219;0.8488 0.3609;0.6683 0.2536;0.6195 0.2634];%10 cities d'=2.691
    for i=1:10
        for j=1:10
            DL10(i,j)=((city10(i,1)-city10(j,1))^2+(city10(i,2)-city10(j,2))^2)^0.5;
        end
    end
    DLn=DL10;
    cityn=city10;
end
 
if n==30
    city30=[41 94;37 84;54 67;25 62;7 64;2 99;68 58;71 44;54 62;83 69;64 60;18 54;22 60;
        83 46;91 38;25 38;24 42;58 69;71 71;74 78;87 76;18 40;13 40;82 7;62 32;58 35;45 21;41 26;44 35;4 50];%30 cities d'=423.741 by D B Fogel
    for i=1:30
        for j=1:30
            DL30(i,j)=((city30(i,1)-city30(j,1))^2+(city30(i,2)-city30(j,2))^2)^0.5;
        end
    end
    DLn=DL30;
    cityn=city30;
end
 
if n==50
    city50=[31 32;32 39;40 30;37 69;27 68;37 52;38 46;31 62;30 48;21 47;25 55;16 57;
        17 63;42 41;17 33;25 32;5 64;8 52;12 42;7 38;5 25; 10 77;45 35;42 57;32 22;
        27 23;56 37;52 41;49 49;58 48;57 58;39 10;46 10;59 15;51 21;48 28;52 33;
        58 27;61 33;62 63;20 26;5 6;13 13;21 10;30 15;36 16;62 42;63 69;52 64;43 67];%50 cities d'=427.855 by D B Fogel
    for i=1:50
        for j=1:50
            DL50(i,j)=((city50(i,1)-city50(j,1))^2+(city50(i,2)-city50(j,2))^2)^0.5;
        end
    end
    DLn=DL50;
    cityn=city50;
end
 
if n==75
    city75=[48 21;52 26;55 50;50 50;41 46;51 42;55 45;38 33;33 34;45 35;40 37;50 30;
        55 34;54 38;26 13;15 5;21 48;29 39;33 44;15 19;16 19;12 17;50 40;22 53;21 36;
        20 30;26 29;40 20;36 26;62 48;67 41;62 35;65 27;62 24;55 20;35 51;30 50;
        45 42;21 45;36 6;6 25;11 28;26 59;30 60;22 22;27 24;30 20;35 16;54 10;50 15;
        44 13;35 60;40 60;40 66;31 76;47 66;50 70;57 72;55 65;2 38;7 43;9 56;15 56;
        10 70;17 64;55 57;62 57;70 64;64 4;59 5;50 4;60 15;66 14;66 8;43 26];%75 cities d'=549.18 by D B Fogel
    for i=1:75
        for j=1:75
            DL75(i,j)=((city75(i,1)-city75(j,1))^2+(city75(i,2)-city75(j,2))^2)^0.5;
        end
        
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.

三、运行结果

【TSP问题】基于hopfield神经网络求解TSP问题matlab_路径规划_02【TSP问题】基于hopfield神经网络求解TSP问题matlab_matlab_03