一、简介

1 GOA数学模型


2 GOA迭代模型

3 GOA算法的基本流程

4 GOA缺点

二、源代码
clc;
clear;
close all;
% Change these details with respect to your problem%%%%%%%%%%%%%%
ObjectiveFunction=@ZDT1;
dim=5;
lb=0;
ub=1;
obj_no=2;
if size(ub,2)==1
ub=ones(1,dim)*ub;
lb=ones(1,dim)*lb;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
flag=0;
if (rem(dim,2)~=0)
dim = dim+1;
ub = [ub, 1];
lb = [lb, 0];
flag=1;
end
max_iter=100;
N=200;
ArchiveMaxSize=100;
Archive_X=zeros(100,dim);
Archive_F=ones(100,obj_no)*inf;
Archive_member_no=0;
%Initialize the positions of artificial whales
GrassHopperPositions=initialization(N,dim,ub,lb);
TargetPosition=zeros(dim,1);
TargetFitness=inf*ones(1,obj_no);
cMax=1;
cMin=0.00004;
%calculate the fitness of initial grasshoppers
for iter=1:max_iter
for i=1:N
Flag4ub=GrassHopperPositions(:,i)>ub';
Flag4lb=GrassHopperPositions(:,i)<lb';
GrassHopperPositions(:,i)=(GrassHopperPositions(:,i).*(~(Flag4ub+Flag4lb)))+ub'.*Flag4ub+lb'.*Flag4lb;
GrassHopperFitness(i,:)=ObjectiveFunction(GrassHopperPositions(:,i)');
if dominates(GrassHopperFitness(i,:),TargetFitness)
TargetFitness=GrassHopperFitness(i,:);
TargetPosition=GrassHopperPositions(:,i);
end
end
[Archive_X, Archive_F, Archive_member_no]=UpdateArchive(Archive_X, Archive_F, GrassHopperPositions, GrassHopperFitness, Archive_member_no);
if Archive_member_no>ArchiveMaxSize
Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
[Archive_X, Archive_F, Archive_mem_ranks, Archive_member_no]=HandleFullArchive(Archive_X, Archive_F, Archive_member_no, Archive_mem_ranks, ArchiveMaxSize);
else
Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
end
Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
index=RouletteWheelSelection(1./Archive_mem_ranks);
if index==-1
index=1;
end
TargetFitness=Archive_F(index,:);
TargetPosition=Archive_X(index,:)';
c=cMax-iter*((cMax-cMin)/max_iter); % Eq. (3.8) in the paper
for i=1:N
temp= GrassHopperPositions;
for k=1:2:dim
S_i=zeros(2,1);
for j=1:N
if i~=j
Dist=distance(temp(k:k+1,j), temp(k:k+1,i));
r_ij_vec=(temp(k:k+1,j)-temp(k:k+1,i))/(Dist+eps);
xj_xi=2+rem(Dist,2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Eq. (3.2) in the paper
s_ij=((ub(k:k+1)' - lb(k:k+1)') .*c/2)*S_func(xj_xi).*r_ij_vec;
S_i=S_i+s_ij;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
end
S_i_total(k:k+1, :) = S_i;
end
X_new=c*S_i_total'+(TargetPosition)'; % Eq. (3.7) in the paper
GrassHopperPositions_temp(i,:)=X_new';
end
% GrassHopperPositions
GrassHopperPositions=GrassHopperPositions_temp';
display(['At the iteration ', num2str(iter), ' there are ', num2str(Archive_member_no), ' non-dominated solutions in the archive']);
end
if (flag==1)
TargetPosition = TargetPosition(1:dim-1);
end
figure
Draw_ZDT1();
hold on
plot(Archive_F(:,1),Archive_F(:,2),'ro','MarkerSize',8,'markerfacecolor','k');
legend('True PF','Obtained PF');
title('MOGOA');
set(gcf, 'pos', [403 466 230 200])- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
- 44.
- 45.
- 46.
- 47.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53.
- 54.
- 55.
- 56.
- 57.
- 58.
- 59.
- 60.
- 61.
- 62.
- 63.
- 64.
- 65.
- 66.
- 67.
- 68.
- 69.
- 70.
- 71.
- 72.
- 73.
- 74.
- 75.
- 76.
- 77.
- 78.
- 79.
- 80.
- 81.
- 82.
- 83.
- 84.
- 85.
- 86.
- 87.
- 88.
- 89.
- 90.
- 91.
- 92.
- 93.
- 94.
- 95.
- 96.
- 97.
- 98.
- 99.
- 100.
- 101.
- 102.
- 103.
- 104.
- 105.
- 106.
- 107.
- 108.
- 109.
- 110.
- 111.
- 112.
- 113.
- 114.
- 115.
- 116.
- 117.
- 118.
- 119.
- 120.
- 121.
- 122.
- 123.
- 124.
- 125.
- 126.
- 127.
- 128.
三、运行结果

四、备注
版本:2014a
2244

被折叠的 条评论
为什么被折叠?



