一、简介

【优化算法】多目标蝗虫优化算法(MOGOA)_matlab
1 GOA数学模型【优化算法】多目标蝗虫优化算法(MOGOA)_优化求解_02【优化算法】多目标蝗虫优化算法(MOGOA)_优化求解_03【优化算法】多目标蝗虫优化算法(MOGOA)_优化求解_04
2 GOA迭代模型【优化算法】多目标蝗虫优化算法(MOGOA)_matlab_05【优化算法】多目标蝗虫优化算法(MOGOA)_matlab_06
3 GOA算法的基本流程【优化算法】多目标蝗虫优化算法(MOGOA)_matlab_07【优化算法】多目标蝗虫优化算法(MOGOA)_优化求解_08
4 GOA缺点【优化算法】多目标蝗虫优化算法(MOGOA)_优化求解_09【优化算法】多目标蝗虫优化算法(MOGOA)_matlab_10

二、源代码

clc;
clear;
close all;

% Change these details with respect to your problem%%%%%%%%%%%%%%
ObjectiveFunction=@ZDT1;
dim=5;
lb=0;
ub=1;
obj_no=2;

if size(ub,2)==1
    ub=ones(1,dim)*ub;
    lb=ones(1,dim)*lb;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
flag=0;
if (rem(dim,2)~=0)
    dim = dim+1;
    ub = [ub, 1];
    lb = [lb, 0];
    flag=1;
end


max_iter=100;
N=200;
ArchiveMaxSize=100;

Archive_X=zeros(100,dim);
Archive_F=ones(100,obj_no)*inf;

Archive_member_no=0;

%Initialize the positions of artificial whales
GrassHopperPositions=initialization(N,dim,ub,lb);

TargetPosition=zeros(dim,1);
TargetFitness=inf*ones(1,obj_no);

cMax=1;
cMin=0.00004;
%calculate the fitness of initial grasshoppers

for iter=1:max_iter
    for i=1:N
        
        Flag4ub=GrassHopperPositions(:,i)>ub';
        Flag4lb=GrassHopperPositions(:,i)<lb';
        GrassHopperPositions(:,i)=(GrassHopperPositions(:,i).*(~(Flag4ub+Flag4lb)))+ub'.*Flag4ub+lb'.*Flag4lb;
        
        GrassHopperFitness(i,:)=ObjectiveFunction(GrassHopperPositions(:,i)');
        if dominates(GrassHopperFitness(i,:),TargetFitness)
            TargetFitness=GrassHopperFitness(i,:);
            TargetPosition=GrassHopperPositions(:,i);
        end
        
    end
    
    [Archive_X, Archive_F, Archive_member_no]=UpdateArchive(Archive_X, Archive_F, GrassHopperPositions, GrassHopperFitness, Archive_member_no);
    
    if Archive_member_no>ArchiveMaxSize
        Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
        [Archive_X, Archive_F, Archive_mem_ranks, Archive_member_no]=HandleFullArchive(Archive_X, Archive_F, Archive_member_no, Archive_mem_ranks, ArchiveMaxSize);
    else
        Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
    end
    
    Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
    index=RouletteWheelSelection(1./Archive_mem_ranks);
    if index==-1
        index=1;
    end
    TargetFitness=Archive_F(index,:);
    TargetPosition=Archive_X(index,:)';
    
    c=cMax-iter*((cMax-cMin)/max_iter); % Eq. (3.8) in the paper
    
    for i=1:N
        
        temp= GrassHopperPositions;
        
        for k=1:2:dim
            S_i=zeros(2,1);
            for j=1:N
                if i~=j
                    Dist=distance(temp(k:k+1,j), temp(k:k+1,i));
                    r_ij_vec=(temp(k:k+1,j)-temp(k:k+1,i))/(Dist+eps);
                    xj_xi=2+rem(Dist,2);
                       
                    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Eq. (3.2) in the paper 
                    s_ij=((ub(k:k+1)' - lb(k:k+1)') .*c/2)*S_func(xj_xi).*r_ij_vec;
                    S_i=S_i+s_ij;
                    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
                end
            end
            S_i_total(k:k+1, :) = S_i;
            
        end
        
        X_new=c*S_i_total'+(TargetPosition)'; % Eq. (3.7) in the paper
        GrassHopperPositions_temp(i,:)=X_new';
    end
    % GrassHopperPositions
    GrassHopperPositions=GrassHopperPositions_temp';
    
    display(['At the iteration ', num2str(iter), ' there are ', num2str(Archive_member_no), ' non-dominated solutions in the archive']);
end


if (flag==1)
    TargetPosition = TargetPosition(1:dim-1);
end

figure

Draw_ZDT1();

hold on

plot(Archive_F(:,1),Archive_F(:,2),'ro','MarkerSize',8,'markerfacecolor','k');

legend('True PF','Obtained PF');
title('MOGOA');

set(gcf, 'pos', [403   466   230   200])
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125.
  • 126.
  • 127.
  • 128.

三、运行结果

【优化算法】多目标蝗虫优化算法(MOGOA)_优化求解_11

四、备注

版本:2014a